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ABSTRACT

The object of these notes is to develop a unifying framework for the

functional analytic representation of infinite dimensional linear systems with

unbounded input and output operators. On the basis of the general approach

new results are derived on the wellposedness of feedback systems and on the

linear quadratic control problem. The implications of the theory for large

classes of functional and partial differential equations are discussed in

* detail.
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SIGNIFICANCE AND EXPLANATION

0

For a large number of control and observation processes in physics and

engineering an adequate mathematical representation leads to infinite

dimensional systems with unbounded input and output operators. In partial

differential equations this is the case if the control acts through the

boundary and if measurements can only be taken at a few points of the spatial

domain. Analogous phenomena occur in functional differential equations if

there are delays in the input and output variables.

The object of this paper is to develop a unifying framework for the

functional analytic representation of infinite dimensional systems with

unbounded input and output operators. On the basis of the general approach

new results are derived on the wellposedness of feedback systems and on the

linear quadratic control problem. The implications of the theory for large 0

classes of functional and partial differential equations are discussed in

detail.

S

The responsibility for the wording and views expressed in this descriptive -,

summary lies with MRC, and not with the author of this report.
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INFINITE DIMENSIONAL LINEAR SYSTEMS WITH UNBOUNDED CONTROL AND OBSERVATION:

A FUNCTIONAL ANALYTIC APPROACH

Dietmar Salamon

I. INTRODUCTION

For large classes of infinite dimensional control systems an adequate mathematical

representation leads to unbounded input and output operators. In partial differential

equations this is the case if the control acts through the boundary and if the measure-

ments can only be taken at a few points of the spatial domain. Analogous phenomena occur S
in functional differential equations if there are delays in the input and output variables.

These notes present a unifying abstract framework for the study of infinite

dimensional linear systems which allows for unbounded control and observation. The main

emphasis has been to keep the theory in a simple and elegant form and still to cover most -

of the known examples of well-posed, linear, time invariant infinite dimensional control

systems. The general approach is then used to derive new results on the wellposedness of

feedback systems and on the linear quadratic control problem. Furthermore, it is shown how

large classes of functional and partial differential equations can be represented within

the abstract functional analytic framework.

The relevance of unbounded input and output operators both from a theoretical and from

a practical point of view has been recognized for a long time in the literature on the -

mathematical theory of infinite dimensional control systems. Without attempting to give a

complete overview we mention the classical work by LIONS (28], LIONS-MAGENES (29] as well

as the early papers by FATTORINI [12], LUKES-RUSSELL [30], RUSSELL (361, (37], [38] and the

more recent book by CURTAIN-PRITCHARD (6]. In recent years more attention has been paid to

the abstract representation of boundary control systems. In the context of partial

differential equations we refer to BALAKRISHNAN [2], WASHBURN [45], HO-RUSSELL (19],

LASIECKA-TRIGGIANI [24], and in the context of functional differential equations to

ICHIKAWA (20], DELFOUR (10], SALAMON (40], DELFOUR-KARRAKCHOU [11], PRITCHARD-SALAMON 134]

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DMS-8210950,
Mod 1.
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Despite these efforts there are certain classes of wellposed infinite dimensional

systems for which a satisfactory functional analytic representation has not yet been

developed. Among these there are the examples discussed in section 6 and section 7.3. The

main feature of these systems is that the input and output operators are in a sense more

unbounded than the operator which describes the dynamics of the free system. In

particular, the wave equation in section 7.3 has been one of the main motivating examples

for the development of our general approach.

This general approach is discussed in detail in section 2. The important new feature S

of the abstract semigroup control system in section 2.1 is the representation of the output

and the introduction of the operator T . The development of this new structure has turned

out to be necessary in order to allow for enough unboundedness in the input and output

operators. If either the input or the output operator is strictly unbounded, an equivalent

representation of the infinite dimensional system is derived in section 2.2 and section 2.3

leading to the concepts of an "abstract boundary control system" and an "abstract point

observation process". These two concepts are dual to each other while the concept of an -

"abstract semigroup control system" is self dual (section 3). Based on the fundamental

theory of section 2 a new perturbation result is derived in section 4. Section 5 deals

with the linear quadratic control problem for the class of systems discussed in section 2

without further restrictions. In particular, the optimal control is characterized in terms S

of the dual system and conditions are given under which the optimal control is

differentiable. Furthermore, it is shown that the optimal control satisfies an unbounded

feedback law and is related to a Riccati type equation. A very general class of functional

differential equations is discussed in section 6. In section 7 it is shown how both

parabolic and hyperbolic partial differential equations can be described within the

framework of section 2.

-2-



2. THREE BASIC CONCEPTS

2.1 SEMIGROUP CONTROL SYSTEMS

An abstract qemigroup control system (SCS) is described by the equation ."

(2.101) x(t) =Ax(t) + Bu(t), t 0, x(O) =X 0  ,--

where u(t) e U is the input, W L H C V are Hilbert spaces with continuous, dense

injections and and A e L(W,H) n L(H,V), B e L(U,V).

REMARK 2.1. If A D(A) + H is a closed, densely defined operator on a Hilbert space

H, then W D P(A) and V* - V(A*) can be made into Hilbert spaces with the respective

graph norms. Identifying H with its dual we obtain W C H C V and V* C H C W* with

continuous, dense injections. Furthermore, A and A can now be regarded as bounded

operators from W, or respectively V*, into H. By duality, we obtain the extensions

A e L(H,V), A e L(H,W). If A has a nonempty resolvent set, then W = {x e H[Ax e H.

and the bounded extension A e L(H,V) coincides with the adjoint of the unbounded

restriction A : )2) 4 v*. The same holds for A*. Finally, we point out that

whenever W C H with a continuous, dense injection and A e L (W,H) has a nonempty

resolvent set, then the norm on W is equivalent to the graph norm of A.

The output of the free system (u(t) S 0) can be described by an operator C e L(w,Y)

if x(t) e W for every t 0. In order to describe the output of the forced motions of

(2.10I) let us assume that p1-A W H is boundedly invertible for some p e R. Then

every solution x(,) e C1 (0,T;H] of (2.1I) can be written in the form

(2.2) x(t) - (W1-A) (Ux(t) - x(t)) (UI-A)-IBu(t)

Hence x(t) , W unless Bu(t) e H. Therefore the operator C alone is not enough to

describe the output of the forced motions. Another operator T e L(U,Y) is needed. Then

-3-
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as motivated by (2.2) we can define the output of (2.1;1) by

(2.1;2) y(t) = C(PI-A)-( Wx(t) - x(t)) + T u(t)

whenever x(-) e CI[O,T;H] satisfies (2.1;1). In order to make sure that the expression

(2.1;2) is independent of p, we have to assume that the operator family T e L(uY), 0

W # 0(A), satisfies a certain compatibility condition. The following hypothesis

summarizes all the assumptions imposed on A, B, C and T

(SO) The operator PI-A W + H is boundedly invertible for some P e R, V* D(A*),

(2.3) T - T= (A-IJ)C(PI-A) (AI-A)-B

for all A,p e G(A). 0

At some places we need in addition that the input and output operator are strictly

unbounded (with respect to H) that is

(2.4) range B fl H = (01

(2.5) range C* fl H = (0)

RE4ARKS 2.2

(i) The compatibility condition (2.3) guarantees that the expression (2.1;2) for the

output of the system is independent of i.

(ii) The operator family T P L(U,Y) is analytic on C\O(A) and has to be

understood as the transfer operator which determines the input/output relationship of (2.1)

in the frequency domain. It generalizes the expression C(uI-A) B which does not make

sense itf both B and C are strictly unbounded with respect to H.

(iii) If either range B C H or C extends to a bounded operator from H into Y,

then T. C(PI-A) -B + D for some D e L(U,Y). Therefore T includes the possibility

-.4-
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of a direct input/output relation.

The next hypothesis in related to the homogeneous equation (2.1;1) (u(t) E 0).

(Si) The operator A DW V W)= H is the infinitesimal generator of

a strongly continuous semigroup SWt e LHn.

If (SO) and (SI) are satisfied, then S(t) is also a strongly continuous semigro'p on W

and V and the infinitesimal generator of S(t) e L(V) is given by the extended operator

A ;H + V (Remark 2.1). The next Lemma is a well known result in semigroup, theory and

summrizes the consequences of hypothesis (Si) for the inhomogeneous equation (2.lg 1).

LEMMA 2.3

Let (SO) and (Si) be satisfied, let xO e H and u(*) e w 1 ,2EO,TiU] be given and

define

(2.6) x(t) =SWtX 0 + ftS(t-s)Bu(*)d., 0 4 t 4 T
0S

Then x(*) e C[O,THi nl C [O,T;V] and

(2.7) ;(t) -Ax(t) + Bu(t) - (t)(Ax0 + SUMO) + ftS(t-s)Bu Wds
0S 0

for 0 4 t 4 T. If moreover u(*) e w 2 ,2 O,TuU] and AxO + BUMO e H, then

x(*) e c1 ([O,T;HI.

Let (SO) and (SI) be satisfied and let u(*) e W2 ,2(O,T;U] and xO e H satisfy

Ax0+ Bu(O) e H. Then we denote by x(t) - x(tjx0 ,u) the corresponding unique solution of

(2.lu0) which is given by (2.6) and by y(t) - y(tux0 1 u) the associated output (2.1;2).

The next hypothesis weakens the assumptions of Lemma 2.3. The final two hypotheses are

related to the state/output and the input/output relationship of the SCS (2.1).



(S2) (Si) is satisfied and there exists a c > 0 such that the following

inequality holds for all U(') e W 1 ,2[0,T;U]

I IT S(T-.)Bu(.)dsi 4 cl() 2
L [O,T;U]

(S3) (Si) is satisfied and there exists a c > 0 such that the following

inequality holds for all x e w

lc()lL 2[0,T;Y] 4 oiH

(S4) (Si) is satisfied and there exists a c > 0 such that the following

inequality holds for every u(-) e w2 ,2 [0,T;U] with u(0) =0

1 y -0 u 1L 2 [0 ,T ;Y ] < c u * L 2 [0 ,T ;U]

DEFINITION 2.4

The SCS (3. 1) is said to be well posed if (SO-4) are satisfied. If the SCS (3.1) isS

well posed and x0 e H, u(*) e L
2([0,T;Ul are given, we define x(t) =x(t;x 0 ,u) X (2.6)

and y(t) =y(t;x 0 ,u) by continuous extension of the expression (2.1;2) using (S3) and

(S4). y(t) is said to be the weak output of the SCS (2.1).

By definition, the weak output y(t;x0 ,u) of the well posed SCS (2.1) has to satisfy

(2.1;2) only if u(*) e w2 ,2 [0,T;H], uCO) = 0, x0 e W. It is not immediately obvious

that y(t) also satisfies (2.1;2) in general whenever x(-;x0 ,u) e W
1 ,2 [0,T;H]. We

establish this in the next Lemma along with some differentiability properties of the

solutions and outputs of (2.1).

LE.mmA 2.5S

Suppose that the SCS (2.1) is well posed, let x0 e H, u(I) e L 2LO,T;U] be given and

-6-
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let x(t) = x(t;x 0 ,u), y(t) y(t;x 0 ,u) be defined as above. Then the following

statements hold.

i) x(1;xru) e C[0,T;H] n w1'2
[0,TiV] satisfies (2.1;0) for almost every

t e (0,T].

(ii) If x(,;x0 ,u) e WI' 2[0,T;H] then (2.1;2) holds for almost every t e [0,Tj.

(iii) If u(*) e WI'
2
[0,T;U] and Ax0 + Bu(O) e H, then x(°ix 0 u) e C

1 (0,T;HI, 0

y(°;x0 ,u) e w1'2[0,T;Y] satisfy x(t;x 0 ,u) = x(t;Ax0 +Bu(0),U) and y(t;x 0 ,u) =

y'tiAx0 +Bu(0),u) for (almost) every t e [0,T].

PROOF: The continuity of x~t) in H follows from standard estimates using (S2) (see

[40, Theorem 1.3.4]). Moreover, (2.11u) follows from the fact that the equation

x(t;x 0 ,u) - x0 + J [Ax(sx 0 ,u) + Bu(s)lds

holds for 0 4 t < T, u(1) e w1'2 [0,TjU], Ax0 + Bu(0) e H (Lemma 2.3) and that both sides

of this equation depend continuously on x0 e H and u(.) e L2 [0,T;U). This proves

statement (i). "

In order to establish statement (ii) we have to make use of the calculations leading

to equation (3.4) in the proof of Theorem 3.3 below. Let us fix v(.) e W2'2 [0,T;Y],

v(T) - 0, let z(s) = z(s;0,v) be given by (3.3) and define w(s) =

B (It-A )- (uz(s)+z(s)) + T*V(s) for 0 4 s 4 T. then it follows from (3.4) that the

equation

<v(t),y(t;x 0 ,u>ydt <z(0),x0>H + <w(s),u(S)>uds

holds for x0 e W, u(*) e W2'2 [0,T;U), u(0) = 0, and hence, by continuous dependence for

all x0 e H, u(*) e L
2 
(0,T;UJ. If moreover x(-;x0,u) e W

1
'
2
[0,T;H1, we may define y(t)

by (2.1;) and use (3.4) once again to obtain

-7-

-9

+. - + - • . - -- • + - +- . ' .- . + , • , ,.+. .+



0

u<v~t)y(tx0 ,u) y(t)>Ydt = 0

;ince the set of all v(-) e W2'2[0,T;Y] with v(T) 0 is dense in L2(0,T;Y] we

onclude that y = y.

In order to establish statement (iii) let us choose u(°) e w3 '2 [0,T;U] with

\x0 + Bu(0) e H and A(Ax0 +Bu(0)] + Bu(0) e H. Then it follows from Lemma 2.3 that S

x(t;x 0 ,u) = x0 + j0 x(s;Ax0 +Bu(0),u)ds, 0 t T

,nd that x(*;Ax0+Bu(0),u) e C1
[0,T;H]. Hence we can apply statement (ii) to both

(t;x 0 ,u) and y(t;Ax0 +Bu(0),u) and obtain with the help of the above equation that

Y(t;x 0 ,u) = Y(0;x 0 'u) + it y(s;Ax0 +Bu(0),u)ds, 0 4 t < T

0S

lence statement (iii) follows from the fact that both sides in these two equations depend

:ontinuously on x0 e H, Ax0 +Bu(0) e H and u e W '2
[0,T;U]. Here we need the fact that

= t(x,u,z) e H x U x HIAx+Bu 
= 

z} contains {(x,u,z) e FIAz e H + range B} as a dense

;ubspace. In fact, given (x,u,z) e F choose wk e w converging to Px-z e H and 5

lefine xk (PI-A)1 (w k+Bu), zk =Ax k + Bu. Then (XkUzk ) converges to (x,u,z) in

and Azk W iBu e H. L"

f the SCS (2.1) is well posed, then we introduce for notational convenience the

cerat,rs 6(T) e L(L
2
t0,T;U];H), C(T) e L(H,L 2 [0,T;YJ, T(T) e L(L 2 

0,T;U],L 2 [0,T;YI) such

hat

x(T;x 0 ,u) = S(T)x 0 + S(T)u e H

y(I;x 0,u) C(T)x 0  + T(T)u e L2 [0,T;Y ,

-r X, e H and u(-) e L
2
[0,T;U]. For t ( T we also introduce the left shift operator 5

I tle restriction operator Pt from L2[0,T;U] into L2 (O,t;U] by defining

-8-
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(i)Suppose that the operators A, 0, G satisfy (PO) and let V, A e L(H,V),

e L(u,v) be defined by (2.29), (2.30). Then the domain W = V(A) of A in H is

ve b (2.31). Furthermore, there exist unique operators c e Lw,Y), T e L(U,'zi,

G (A), satisfying (2.23) and (2.24). These operators also satisfy (SO) and C has a

!nse range and is strictly unbounded. Finally, X is given by (2.21) and the norm on

is equivalent to the one defined by (2.22).

(iii) Suppose that the spaces W, H, V, X and the operators A, B, C, T A, Q, G

tisfy (SO), (P0), (2.21), (2.23), (2.24), (2.29-32). Then every solution x(-) e C1
[O,T;H)

the SCS (2.1) satisfies the POP (2.27) and vice versa. Furthermore, G is injective

d strictly unbounded if and only if B is injective and strictly unbounded.

MARK 2.14

If the SCS (2.1) and the POP (2.27) are related as above, then the map (P, V x Y + X,

,e G(A), defined by ( i (x,y) =(jUI-A)(uI-A) -1x + Qy is an isomorphism with the

operties

x (pw (x,C(vI-A) -1x) , Ax = p (Ax,L'C(WI-A)- X), x e H

Qy = p((O,y), Gu (P. (Bu,T U), y e Y, u e U

is suggests an alternative procedure for transforming the SCS (2.1) into a ECS of the

rm (2.27).

The next hypothesis is related to the homogeneous equation (2.27).

1) For every xO e H with Ax 0e H + range 0 there exists a

uniue oluion x(-) = X( ; 0 10) e C
1 
[0,T;fl] of the initial value

problem x-Ax e range Q, x(0) =xO. In C[0,T;H] this solution depends

continuously on xO e H.

-22-



and is defined by Ax - Ax e range . By Remark 2.1, the adjoint of this unbounded

operator A : D(A) + H coincides with the adjoint of the bounded operator A e L(H,V) and

has the domain

(2.32) D (A*) = V* x e X* x 0}

In order to construct C e L(W,Y), let x e W be given and choose y = Cx e Y such

that Ax - Ax = Qy. Then C is well defined, linear and satisfies (2.23).

Furthermore, C is bounded, since 41 has a bounded inverse on its range.

In order to contruct T e L(U,Y), let u e U be given and note that, by (3.30),

W(ijI-A)(pI-A)- Bu = BU 1TGu. Hence there exists a y -T u e Y such that

Py = Gu - (UI-A)(PI-A) Bu. Since 0 is injective and has a closed range, this operator

T is well defined, bounded, linear and satisfies (2.24).

The next Proposition summarizes the above transformations and is the dual result of

Proposition 2.8. The proof will be omitted.

PROPOSITION 2.13

(i) Let the operators A, B, C, T satisfy (SO), suppose that C has a dense

range and is strictly unbounded and let X be defined by (2.21), (2.22). Then there

exist unique operators A e L(H,X), 9 e L(Y,X), G e L(U,X) satisfying (2.23) and (2.24).

These operators also satisfy (P0), (2.29-32). Furthermore, for P a (A), the operator

-1
C = C(LiI-A) : H + Y

extends to a bounded linear operator from X into Y and

(2.33) C A = PC(Wi-A)
- 

, C f = I, C G = TG . .

-21-
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Again we might have considered the POP (2.27) as our basic model where H - X are

iilbert spaces with a continuous dense injection and the operators A e L(H,X), il e L(Y,x),

e L(u,x) satisfy the following hypothesis.

P0) i2 is injective and has a closed range, range a n H {0},

there exists a P e R such that X = range (PI-A) + range Q

and wx - Axe range 12 implies x 0 for x e H.

kt some places we also need that the input operator G e L(U,X) is strictly unbounded

:with respect to H) that is

2.28) range G n (H + range Q) = (0}

In order to transform any POP (2.27) which satisfies hypothesis (P0) into a SCS of the

:orm (2.1), we introduce the space

:2.29) V = X/range 0

and denote by i X + V the canonical projection. Since range Q n H = (0} we can

Ldentify every x e H with lix x + range 0 e V. This makes H into a dense subspace

)f V with a continuous injection. Now let us define the operators A e L(H,V), B e L(U,V)

)y

-2.30) A =wA , S "G

'hen hypothesis (P0) implies that PI-A e L(H,V) is one-to-one and onto for some i e R.

ience A is a closed operator on V with a nonempty resolvent set. So is its restriction

'0 H which has the domain

2.31) W V(A) = ix e HlAx e H + range

-20-
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0

equivalent to z e x*, Slz = 0. Hence Ax - Qy e H implies that for all z e V(A*)

<A*z,x> = <A*z,x> - <*z,y> <z,Ax-Sly>

and therefore x e D(A) = w. Furthermore, it follows from (2.23) that SI(y-Cx) =

Oy - Ax + Ax e H. Since R is onto and ker Q is dense in H (Proposition 2.8), we 0

obtain that Q is injective and H n range fi = {01. Hence y Cx and Ax = Ax - fy.

If Ax + Gu - fy e H, then it follows from (2.24) that

A(x-(uI-A)-IBu) - a(y-T Uu) = Ax + Gu - Sly - 1A(UI-A)- Bu e H

and hence

x - (VI-A)- Bu e W, C(x-(IAI-A)- Bu) = y - T u

This implies (2.25), x e H, (wI-A)x - Bu e H, and therefore Ax + Bu e H. 0

The previous Lemma shows that every solution x(-) e C
1
[0,T;H] of the SCS (3.1) also

satisfies the abstract point observation process (POP)

(2.27) x(t) + Qy(t) = Ax(t) + Gu(t), t ) 0, x(0) = x0

and vice versa. In (2.27) y e Y has to be understood as the output and u e U as the

input of the system. The interpretation of (2.27) is that the initial value problem

x = Ax, x(0) - x0 , does not have a solution in general and has to be replaced by the

differential inclusion x - ex 8 range fi. It is important to note that 0 is boundedly

invertible on its range so that the output of the system can be described by the action of

an inverse of 14 on x - Ax. •

-19-

-0
." -. *. . . ..



(2.23) Ax -Ax + aCx xe w

Finally, we define G e L(U,X) by

(2.24) Gu (iji-A)(uI-A) Bu + OT u

for u e u and p ,0 G(A). Then some straightforward manipulations involving (2.3) and

(2.23) show that the operator G defined by (2.24) is independent of V.

LEMMA 2.12

Suppose that the spaces W, H, V, X and the operators A, B, C, T A, Q, G satisfy

(SO), (2.21), (2.23), (2.24) and that C has a dense range and is strictly unbounded. Let

x e H, u e U, y e Y be given. Then Ax + Gu - fy e H if and only if Ax + Bu e H and

(2.25) y =C(uI-A) (Ux-Ax-Bu) + T u

Furthermore, if Ax + Gu - fy e H, then 0

(2.26) Ax + Bu + ay Ax + Gu

PROOF: Suppose that Ax + Bu e H and y e Y is given by (2.25). Then

fy = QC(UI-A)- (ox-Ax-Bu) + fiT u

= (A-UI)(PI-A)- (px-Ax-Bu) + QT u + Ux - Ax - Bu

- Ax + Gu - Ax - Bu

In order to prove the converse implication, let us first consider the case u = 0 and S

note that z e D(A*) if and only if A*z e H (Remark 2.1) which, by definition of Q, is

-18-"' . "" "
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(Lemma 2.3). By (2.19), this implies x(.) e C[O,TIZ] and, by (2.10), x(t) x(tl,

rx(t) u(t). Hence, by (82), there exists a constant c > 0 such that

J S(T-s)Bv(s)dsl H 1(T1, H cHv(. 2
L (0,-MU]

This proves (S2). •

The equivalence of (S3) and (B3) is trivial. So is the equivalence of (S4 and (B4). 0

Note that the above proof for the equivalence of (B2) and (S2) has already been

presented in CURTAIN-SALAMON [7]. We have included the proof for the purpose of

completeness.

2.3 POINT OBSERVATION PROCESSES

In this section we consider the case that the output operator c e LIw,Y) of the SCS

(2.1) has a dense range and is strictly unbounded, that is (2.5) holds. In this situation

there is another way of rewriting the SCS (2.1) and it can be done by means of a procedure

which is dual to the one described in the previous section. 
,

We introduce the space

(2.21) X - {x e HIAx e H + range C*)

and make it into a Hilbert space by defining

(2.22) 1x1
2 " |xI 2 + |yI2 + IA*x+C*y2•

H

where y e Y is the unique vector with A*x + C*y e H. Identifying H with its dual, we .

obtain X* - H C X with continuous, dense injections. Furthermore, there exist unique

operators A e L(H.X), 9 e L(Y,X) satisfying A*x - A x - C fl x for x e X* and hence •

-17-
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jT lt;,12 dt T .()2

where y(t;0,u) = 1x(t;0,u) with X(*;0,U) e C[O.T;zi nl C1[0,T;H]

as in Corollary 2.9.

DEFINITION 2.10

The BCS (2.12) is said to be well posed if the hypotheses (BO-4) are satisfied.

PROPOSITION 2.11

Suppose that the spaces W, H, V, Z and the operators A, B, C, T, A, r, K satisfy

(SO), (B0), (2.8), (2.10), (2.11), (2.15), (2.16). Then the SCS (2.1) satisfies hypothesis

(Sk) if and only if the BCS (2.12) satisfies hypothesis (Bk) for k =1,2,3,4.

PROOF: The equivalence of (Si) and (Bl) follows from PHILLIPS (331. Furthermore, it

follows from Lemma 2.5 and Proposition 2.8 that (S2) implies (B2). In fact, given x0 e Z

and u(*) e W1 ,2 (0,THJ with rx0 =u(0), we get Ax0 + Bu(O) =AX 0 e H and hence the

function x(-) =x(-;x 0,u) e C'[0,T;HI defined by (2.6) satisfies (2.7) (Lemma. 2.5).

Therefore x(-) is the unique solution of the BCS (2.12). Since Ax(t) + Bu~t (t) e H

it follows from (2.19) that x(-) e C[O,T;Z]. The continuous dependence follows easily..

from (2.6) and (2.7) together with (2.19).

Conversely, suppose that (B2) is satisfied, let v(*) e w 1 ,2 [0,T;U] and define

X(t) ft S(t-s)Bu(sllds, u(s) =o

Then x(*) e CU[O,T;H] and

Ax(t) + Bu(t) ft) S(t-s)Bv,(s)ds e H

0-



(2.20) ax ix rx 0

The next hyp-thesis is related to the homogeneous equation (2.12).

(B1) For every x0 e Z with rx 0 0 there exists a unique

solution x(0) = x(-;x0 ,0) e C[0,T~zi nl CU[O,T;H] of

x=Ax, rx - ,X(0) = x0 , depending countinuously on x0 e z.

The implications of this hypothesis for the inhomogeneous equation are summarized in the

Corollary below which follows immediately from Proposition 2.8 together with Leamma 2.3 and

a result in PHILLIPS [33].

COROLLARY 2.9

Let (BO) and (Bi) be satisfied. Then for every x0 e Z and every u(C') e W2. 2 (0,T;u]

with rxo - u(0) there exists a unique solution x(-) =x(*:x0 1 u) e CID,TZ) f) C110,TH])

of (2.12). This solution depends continuously on x0 e Z and Ci)e W1 '2 [0J,TIU].

The next hypothesis weakens the assumptions of Corollary 2.9. The final two

hypotheses are related to the state/output and the input/output relationship of the BCS

(2.12).

(B2) For all x0 e Z, u(*) e W 1 ,2 [0,T;Ul with NO u(0) there

exists a unique solution x(-) = x(-;x0,u) e C[0,T;Z] nl C1 [0,T;H] of

the BCS (2.12) depending continuoualy on x0 e z and L-) L2 [0),TU1.

(B3) (BI) is satisfied and there exists a constant c > 0 such that the
0

following inequality holds for every x0 e z with rx 0 0.

2 ~ l 2

(B4) (B1) is satisfied and there exists a constant c > 0 such that the

following inequality holds for every u(-) e W2 ,2 [0,T;JI with u(0) =0

-15-



(ii) Now let a, r, K be given and let W, V, A, B, C, T be defined as above.

Then B is injective and strictly unbounded since Bu e H and rx = u imply that

Ax - Aix - Brx e H and hence x e W= ker r (Remark 2.1). Now we show that Z is given

by (2.8). if x e z then Ax - Aix -Brx e H + range B. Conversely, if Ax + Bu e H for ..-

some u eu and if rz =u, z ez, then A(x-z) - Ax +Bu -Az eH and hence x-ze w

which implies that x e Z.

In order to establish the equivalence of the norms on Z, let x e Z be given and

chose z e z such that rz *rx and Iz0 < c irxl (Remark 2.7). Then forz 0 U

p e R\0 (A)

1 z 4 0z +I(I-A wA)x z

(2.19)-C c 0 [1+l1uI-A) 1 (U1)]rI (UI-A)'I[.IuJ'lx1 + ltAXlH]

4 c[ixi1 + srxiJ + . -I

(iii) For the proof of statement (iii) it is convenient to identify W*with

Z*/range r* so that 2* Z + W* is the canonical projection. Moreover, note that

range r n H (0) since ker r is dense in H. This allows us to identity x e H with

1x =x + range r* e W*.

Now suppose that K is strictly unbounded and has a dense range. Then Cy Y

*K*ye 81*H implies that Ky 8 H + rangeFr and hence y 0. Therefore C is strictly

unbounded and has a dense range. Conversely suppose that C is strictly unbounded and has

a dense range. Then K*y e H + range r* implies that C y =I*K y e 1 H and hence y =0.

Therefore K is strictly unbounded and has a dense range. 0J

Suppose that the spaces W, H, V, Z and the operators A, B, C, TU r, , K satisfy

(SO), (BO), (2.8), (2.10), (2.11), (2.15), (2.16). Then equation (2.17) shows that

(hJI-A)- 1 B U Z is the solution operator of the abstract elliptic problem

-14-
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(2.18) B T

(ii) Suppose that the operators a, r', x satisfy (00) and let wf, A e L(WH),

c L(W,y) be defined by (2.15), (2.16). Furthermore, Let V be the dual space of

V* - (A*). Then A e L(H,V) and there exist unique operators B e L(U#V)o T e LMuY),

1*% (A), satisfying (2.10) and (2.11). These operators also satisfy (SO) And B is

iniective and strictly unbounded. Finally, z is gven by (2.8) and the norm on Z is

equivalent to the one defined by (2.9).

(iii) Suppose that the spaces Wf, H, V, Z and the oerators A, B3, C, T, xr

satisfy (SO), (B0) (2.8), (2.10), (2.11), (2.15), (2.16). Then every solution

x(*) e C1 f0,TjH] of the SCS (2.1) satisfies the. BCS (2.12) and vice versa. Furthermore,

K is strictly unbounded and has a dense range if and only if C is strictly unbounded and

has a dense range,

PROOF:

Wi The existence of the operators 4, r, K satisfying (2.10), (2.11) has been

established above. Now (2.15) follows from the fact that, by definition 
of r, rx - 0 if

and only if Ax e H which is equivalent to x e W (Remark 2.1). Furthermore, (2.16)

follows from (2.15), (2.10) and (2.11). The equation

A(1I-A)- Bu + Bu Wlji-A)- au e H

for u e U shows that range(pI-A) B C Z and that (2.17) holds. (2.18) is a

consequence of (2.17) and (2.11). Since B is strictly unbounded, we get

wf n range(VI-A) - 0 and z =we ranqe(PJ1-A) -1B follows from the identity

x = li-A) 
1(iX-Ax) + (VIZ-A) Brx

for x e z. Finally, it follows from (2.17) that r is onto.

-13-

Al



In order to transform any BCS (2. 12) which satisfies (B0) into a SCS of the form

(2.1), we introduce the space

(2.15) w = {x e zlrx = o-

and denote by 1 W Z the canonical injection. Then W L- H with a continuous dense 0

injection. The operators A e L(W,H) and C e L(w,Y) are given by

(2.16) A = Ai , C = KI

Now define V = (A) as in Remark 2.1 so that H C V with a continuous dense injection -

and A extends to a bounded operator from H into V. Then it follows from Remark 2.1

that Ax = Ax if and only if rx = 0 for every x e z. This allows us to define the -

operators B e L(u,V) and T e L(u,Y) for u G 0(A) as follows.

Given u e U, choose x e Z such that rx = u and define

Bu= Ax - Ax, T u Kx - C(PI-A) (Vx-Ax).

Then these operators are well defined, they are obviously linear and, by Remark 2.7, they

are bounded. Furthermore, by definition, these operators satisfy (2.10) and (2.11).

PROPOSITION 2.8

i) Let the operators A, B, C, T satisfy (SO), suppose that B is injective and

strictly unbounded and let Z be defined by (2.8), (2.9). Then there exist unique operators

e LM(ZH), r e L(Z,U), K e L(zY) satisfying (2.10) and (2.11). These operators also

satisfy (B0), (2.15), (2.16). Furthermore, Z = W * range (UI-A) 1B for V 0(A) and

(2.17) A(UI-A)- B = J(UI-A)- B, r(PI-A)- B I

-12-
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and vice versa. The interpretation of (2.12) is that the initial value problem X &ix,

x(O) - x0 , does not give rise to unique solutions unless the "boundary condition" rx - u -

is also satisfied. Since equation (2.12) only makes sense if x(t) is at least absolutely

continuous in H, one might understand the solutions of the SCS (2.1) as "weak solutions" .-

of the BCS (2.12).

Note that an analogous version of the above construction has been developed by HO-

RUSSELL [19] for a special class of systems with a scalar input.

In CURTAIN-SALAMON [7] the BCS (2.12) has been considered as a basic model. In fact,

many systems can be formulated as a BCS of the form (2.12) in a direct way (see section 6

and section 7.3). From this point of view we have to assume that Z C H are Hilbert 0

spaces with a continuous dense injection and the operators A e L(z,H), F e L(z,u),

K e L(Z,Y) satisfy the following hypothesis.

(BO) F is onto, ker F is dense in H, the restriction of A S

to ker F is a closed operator on H whose spectrum does not

contain the real axis.

At some places we also need that the output operator K 8 L (Z,Y) is strictly unbounded .

(with respect to H) that is

(2.13) range K n (H + range r) {}

Here we have identified H with its dual so that H C Z* with a continuous dense

injection.

REPIARK 2.7

Since F is onto there exists a constant c0 > 0 such that for every u e U there

exists an x e Z with

(2.14) Fx = u, NXi z c0 1u0 U

-1 1-
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2.2 BOUNDARY CONTROL SYSTEMS

In this section we rewrite the SCS (2.1) into a more convenient form provided that the -

* input operator B e L(U,V) is injective and strictly unbounded that is (2.4) holds. For

* this purpose we introduce the space

(2.8) z {x e HIAx e H + range B}

and make it into a Hilbert space by defining

(2.9) 1X1 2 = 1X5 2 + NU12 + IAx+Bu1 2
Z H U H

* where u e U is the unique input vector with Ax + Bu e H. Then Z C.H with a continuous

dense injection. Furthermore we introduce the operators A e L(Z,H), r e L(Z,U) by

defining AxAx +Bu, rx u for xe z and ue u with Ax +Bu eH. This means that

(2.10) Ax Ax+ Brx x e z

Finally, we define K e L(Z,Y) by

(2.11) Kx =C(pjI-A) (pix-tAx) + T Prx

for x e Z and P it G(A). Some straightforward manipulations using (2.3) show that the.

operator K defined by (2.11) is independent of p

As a consequence of these constructions we obtain that every solution x(-) e C1(0,T;H]

of the SCS (2.1) is also a solution of the abstract boundary control system (ECS)

; (t) =AX(t) t ;~00

(2.12) rx(t) =u~t) ,x(o) x

y(t) =Kx(t)

-10-



(atu)(s) = u(s+T-t), (Ptu)(s) = u(s), 0 4 s f t

for u(') e L2 (0,T;U]. Then a L2 [0,t;U] + L2 [0,TU] is the right shift operator and
,

Pt is the extension operator. They are given by

tt

T , 0 < s < T-t
(i u)(s) = ( u(st-T) ,T-t<a<T

(Ptu)s ( uS) ,0 < s < t( u)(s) o , t < a < T

for u(o) e L2[0,t;U]. The analogous operators on L2[0,T;Y] will also be denoted by

a t Pt' Ot, Pt. The following relations between the various operators express the

linearity and time invariance of the SCS (2.1). They can be easily checked and we state

them without proof.

LEMMA 2.6

(i) ata: id, pt% id, %-tT-t + t- p id

Pt;-t 0 "T-to

(ii) B(T) - S(T-t)B(t)Pt + 8(T-rt)t -"

C(T) - IT0tC(T-t)S(t) + P c(t) ,

T(T) - Pt(t)pt + GT_tC(T - t)B(t) P t + a .t(T-t)aT-t

(ii) B()Oa - B(t), 8(T)p - S(T-t)B(t),

OTtC(T) = C(T-t)S(t), PtC(T) - C(t) ,

T(T)Ot " OtT(t), PtT(T) T(t)Pt  OT jT t(T) Pt C (T-t)13(t)

It seems to be an interesting open question whether all operator families B(t), T(t), C(t)

with the properties of Lemma 2.6 can be represented in the above way in terms of operators

B, C, T which satisfy the hypotheses (S2-4).

-9-
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The implications of this hypothesis for the inhomogeneous equation are summarized in the

Corollary below which follows immediately from Proposition 2.13 together with Lemma 2.3 and

a result in PHILLIPS (331.

COROLLARY 2.15

Let (P0) and (PI) be satisfied. Then for every x0 e H and every u(1) e W2 '2 [0,T;U]

with Ax0 + Gu(0) e H + range 1 there exists a unique solution pair

y(.) - y(*;x0 ,u) e C(0,TjY], x(-) = x(*gx0 ,u) e C
1 [0,T;H] of (2.27). This solution pair

depends continuously on x0 e m, u(-) e WI'
2 [0,T;U] and the H-component of Ax0 + Gu(O).

I
FurthermoreL x(.;x 0 ,u) depends in C[0,T;H] continuously on x0 e H and

u(*) e W,'2[0,TUl.

The following hypothesis weakens the assumptions of Corollary 2.15 and the final two

hypotheses are related to the state/output and input/output behavior of the POP (2.27).

(P2) For every x0 e H and every u(-) e Wl' 2 [0,TU] with

Ax0 + Gu(O) e H + range Q there exists a unique solution pair

y(,) = y(*;x 0,u) e C[O,T;Yj, x(,) - x(o;x 0 ,u) e C'[0,TH] of (2.27).

This solution pair depends continuously on x0 e H, u(') e W '
2 [0,T;H]

and on the H-component of Ax0 + Gu(0).

(P3) For every x0 e H there exists a unique solution pair

x(l) = x(*;x 0 ,0) e C[0,T;Hi n Wl,
2 [0,T;X] and y(.) y(.;x0 ,0) e L

2 (0,T;H]

of (2.27) with u(°) = 0. This solution pair depends continuously on

X. e H.

(P4) (P1) is satisfied and there exists a constant c > 0 such that for

every u(-) e W2 '2 (0,T;U] with u(0) = 0 the following inequality holds

ITl~,)U1 t c IT .t,,2 dt

-23- "
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DEFINITION 2.16

The POP (2.27) is said to be well posed if (P0-4) are satisfied.

PROPOSITION 2.17

Suppose that the spaces W, H, V, X and the operators A, B, C, T, A, Q, G satisfy

(SO), (P0), (2.21), (2.23), (2.24), (2.29-32). Then the following statements holds. 0

(i) The SCS (2.1) satisfies hypothesis (Sk) if and only if the POP (2.27) satisfies

hypothesis (Pk) for k = 1,2,3,4.

(ii) The POP (2.27) is well posed if and only if for every x0 e H and every

u(-) e L
2
[0,T;Ul there exists a unique solution pair

x(*) = x(;x0 ,u) e C[O,T;H] nf W
1
'
2
(0,T;X] and y(.) = y(*;x 0,u) e L2 [0,T;Y] of (2.27)

depending continuously on x0 e H and u(-) e L
2
[0,T;U].

PROOF: The proof of statement (i) is analogous to that of Proposition 2.11 and will be

omitted.

In order to prove statement (ii) let us first assume that the POP (2.27) is well posed

and choose x0 e H, u(.) e W
1
'
2
[0,TIU] with Ax0 + Gu(O) e H + range Q. Then it follows

from statement (i) that the SCS (2.1) is well posed and we can denote by

x(*,x 0 ,u) e C
1
[0,T;H] and y(*,x0 ,u) e W

1
'
2
[0,T;Y] the corresponding solution and output

of (2.1). Furthermore, it follows from Lemma 2.12 that

x(t;x0 ,u) - x0 = f [Ax(s;x 0 ,u) + Gu(s) - Qy(s;x 0 ,u)]ds

for 0 4 t ( T. Since both sides of this equation depend continuously on x0 e H and

u(*) e L
2
[0,T;U] we obtain that x(';x 0,u) e C[O,T;H] nf W1' 2[0,T;X] and

y(.;x0 ,u) e L2 [,T;Y) satisfy (2.27) for every x0 e H and every u(°) L 2[0,T;U]. The

uniqueness follows from the fact that every solution x(-) e C[0,T;H] nf W 1
'
2
[0,T;X] of

(2.27) also satisfies (2.1;1) in V = X/range i. This fact also proves the converse

impli,:ction via the well posedness of the SCS (2.1). _

-24-
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Note that in the case of the SCS (2.1) and of the BCS (2.12) we have to assume that

x(lix0 ,u) e C1[0,TiH] in order to give a meaning to the expression y(tix 0 ,u) in a strong

sense. The previous proposition shows that for the POP (2.27) both x(tgx0 ,u) and

y(tgx 0 ,u) have a well defined meaning as strong solutions for arbitrary xo e H and

u(*) e L 2[0,T;U].

The relation between the various spaces and operators can be summarized by the

following diagram in which the vertical sequences are exact.

Y O

'C

C A A
Y - H .B V

ZB

Kr

U

Finally, we point out that the above results can be combined to transform the POP

(2.27) directly into a BCS of the form (2.12) and vice versa. These transformations are

summarized in the Proposition below. Its proof follows from the earlier results of this S

section and will be omitted.

-25-
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PROPOSITION 2.18

(i) Let the operators A, 9, G satisfy (P0), suppose that G is injective and

strictly unbounded and define Z C H by

(2.34) Z = (X e HIAx e H + range G + range n)

(2.35) 1I*
2 

= x
2 

+ u 2 
+ A+u.I2

Z + u+ H

for x e z, u e u, y e Y with Ax + Gu - y e H. Then z is a Hilbert space with a

continuous, dense injection into H and there exist unique operators A e L(zH),

F e L(Z,U], K e L(Z,Y) such that

(2.36) Ax + QKx AX + Gx , x ez

These operators also satisfy (BO) and K has a dense range and is strictly unbounded.

Furthermore X L-H is given by

(2.37) x* {x e Hj&ex e H + range K + range r*)

(2.38) *X1
2
* 

2  2  2

H + uX

for x e X*, y e Y, u e U with A*x + Ky- F*u e H.

(ii) Let the operators A, F, K satisfy (BO), suppose that K has a dense range

and is strictly unbounded and let X* be defined by (2.37), (2.38). Then X* is a

Hilbert space with a continuoust dense injection into H and there exist unique operators

A e (H,X), 0 e (Y,X), G e (U,X) satisfying (2.36). These operators also satisfy (P0)

and G is injective and strictly unbounded. Furthermore, Z C H is given by (2.34) and

-26-
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the norm on Z is equivalent to the one defined by (2.35).

(iii) If the spaces z C H (- X and the oprators, A, a), G, 6, r, Y satisfy (Po),-

(BO), (2.34), (2.36), (2.37), then every solution x(*) e c 0,TaH] of the POP (2.27) also

satisfies the BCS (2.12) and vice versa. Furthermore, hypothesis (Pk) is equivalent to

hypothesis (Bk) for k =1,2,3,4.

-27-



3. DUALITY

Consider the SCS{;(t) =Ax(t) + Bu(t) ,x(O) .0

(3.1)

y(t) =C(MI-A) (lx(t)-x(t)) + T Ju(t), t > 0

where W C H . V with continuous, dense injections and the operators A e L(W,H) nl L(H,v),

B e L(u,V), c e L(w,y), T P e L(U,Y) satisfy hypothesis (SO). Identifying the spaces H, U, Y'

with their respective duals we obtain V* C- H C W* with continuous, dense injections and

the adjoint operators A* e L(V*,H) nl L(HW*), B* e L(V*,U), C* e L(Y,W*), T* e L(Y,u)
P

also satisfy hypothesis (SO). For some purposes it is convenient to write the dual system

in the time reverse form

;(s) =-A z(s) -C v(s), z(T) z

(3.2)

w(s) =B (lIt-A N Lz(s)+z(s)) + Tilv(s), s T

where v e Y is the input and w e U is the output. Por every z, e H and averyS

v e L2[O,T;Y] the solution of (3.2) is given by

(3.3) z(s;zl,v) =S (T-s)zl + JTS (t-s)Cv(s)ds, sI T
5

Lemma 2.3 shows that z(*;z ,lv) e C1 [O,T;Hl if v(.) e W2 ,2 [O,T;Y] and A z, + C V(T) e H

and that in this case z(s;z 1,v) = z(s;-A z 1-C v(T),v). Whenever

z(*) = z(,;z 1,v) e W 
1 ,2 [,T;HI we denote by w(*;zl,v) the corresponding output of

(3.2). We consider the following hypotheses for the SCS (3.2).

(SO) The operator Pt-A V + H is boundedly invertible for some

P eF R, W V t(A), and T*-T* (AI)B(IA) 1(AI-A*) C* for

all X,ii a (A).
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7S

(S1) The operator A D(A )=V H is the infinitesimal generator

of a strongly continuous semigroup s (t) e L (H).

(S2*) (Si5 ) is satisfied and there exists a constant c > 0 such that

the following inequality holds for all x e V j
IBS*S(T-*)xl L 2 0TU'CCxIA

(S3 ) (Si ) in satisfied and there exists a constant c > 0 such that

the following inequality holds for all v(*) e6 W1 ,2 [0,TIY]

IfT S*(t)C~v(t)dtl 4 clv(-)I
0 H2

L2(0,TgYl

(s4*) (Si ) is satisfied and there exists a c > 0 such that the

following inequality holds for all v(-) e W2 ,2 [0,TiYl with v(T) -0

lw(*iO,v)I 2 (0T ( clv(fl L2[0T

DEFINITION 3.1

The SCS (3.2) is said to be well posed if (SO-4*) are satisfied. If the SCS (3.2) is

well posed and ze H, v(*) e L
2
[0,T;Y] are given, we define zas) -z(spz 1 ,v) kZ (3.3)

and w(s) - w(s~z1.v) by continuous extension of the expression in (3.2) using (S2*) and

(S4*). w(s) is said to be the weak output of the SCS (3.2).

Although the next result is strictly analogous to Lemma 2.5 it is worth being stated

explicitly since it formulates the basic properties of the solutions of the SCS (3.2) in

the time reverse situation and will be needed in section 5.
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LEMMA 3.2

Suppose that the SCS (3.2) is well posed, let zie H, v(-) e L[ 0,TY] be given and

let. z(s) = z(s;zi,v) and w(s) =w(s;zl,v) be defined as above. Then the following

statements holds.

(i) z(*;z1 ,v) e C[0,T;H] nl w 
1
,
2 
[,T;W ] satisfies (3.2) for almost every

s e [0,T].

(ii) If z(*;z lv) e W 1 ,2 [0,T;H] then w(s~zl,v) is given by (3.2) for almost

every s e [0,T].

(iii) If v(*) e w 1 ,2 [0,T;Y] and A*zl + C*v(T) e H, then z(-;zi,v) e 1 [0,T;H],

w(*;z ,v) e W
1
,
2[OTU saif * 1 0

1 [0,;U] stisfyz(spz1 ,v) =z(s;-A z 1-C v(T),v) and w(s~zv)

w(s;-Az -C v(T),v) for (almost) every a e (0,T].

Our basic duality Theorem is the following.

THEOREM 3.3

Mi The SCS (3.1) satisfies hypothesis (Sk) if and only if the dual SCS (3.2)

satisfies hypothesis (Sk*) for k 0,1,2,3,4.

(LII) Suppose that the SCS (3.1) satisfies hypothesis (SO), that u(-) e L 2 [0,T;U],

x(-) e W 1,2 [0,T;H], y(*) e L 2 [,T;Y] satisfy (3.1) and that v(*) e L 2 (0,T;YJ,

z(*) e W 1 ,2 [O,T;H], w(l) e L 2 [,T;U] satisfy (3.2). Then

<Z~)'Xt)>- <z(s),x(s)>H
HH

(3.4)

t <w(T),u(T)>Udt - <V(T),y(T)> dT, 0 4 s 4 t 4 T

PROOF: The equivalence of (SO) and (SO )follows from Remark 2.1, the equivalence of (SI)

and (Si ) is a well known result in semigroup theory and the equivalence of (S2) and (52*

as well as (S3) and (S3*) has been established in [40). The equivalence of (SC) and (S4*)

followq from statement (ii) together with the fact that the functions U(-) L2 W 2 ,2 [0,T;Ul
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with uCO) 0 are dense in L 2[O,TIUI. Now let the assumptions of statement (ii) be

satisfied. Then

,z~t),x ~ -H Z(s),x(s)>H

- ft <;(r),x(r) dr + it. <z(.T).;(T)> dr

- it<((),(UIA) '(iPx(T)-(T)+Bu(r))> HdT
5H

+ it <(ujI-A) 1 (uIZ(t)+(Tr)+C*V(T)), ~(r)>dT

- ft <B*(UI-A)'Z'(r),uC)> dr + it <;(r),U(Ut-A) 1X(T)> dT
a U sH

+ Jt <V(T),C(PIAV 1;(T)> dT + j <u(1.aI-A*) 1 ) );T>d

-t <v(T),C(1JI-A) 1 (U*-.(T)-x(T))> dT
y

isf <W(T),U(T)> dT -it. <v(r),y(T)> dT 0

Defining the operators B(T), C(T), r(T), Ott P t as in section 2.1, we obtain the

following result as a straightforward consequence of Theorem 3.3.

COROLLARY 3.4

If the SCS (3.2) is well posed, then the following eq~uations hold for every z, e H

anu every v(*) e L2 [O,TIY]

z(siz1 ,v) S (T-s)z, + C (T-s)aT- v, 0 (s (T

wC*;z1 1 v) 6 (Tz, + T*(T)v

-31-
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Let us now consider the BCS

X Ct) =AX(t) ,X(O) X

(3.5) rx(t) u~t) ,t > 0

y(t) =Kx(t)

where ZC H with a continuous dense injection and the operators A P, L(Z,H), r e L~z,u),

K e LMzY) satisfy hypothesis (BO). Then H k- Z with a continuous, dense injection and

the dual operators A* e L(H,Z*), r* e L(U..Z*), K* e L(Y,Z*) satisfy hypothesis (PO)

with x =z*, A A* s2 r * G = K*. As the dual systein of the BCS (3.5) we cunsider the

POP

(3.6) ;(s) -r w(s) =-A z(s) - K v(s), s IC T, z(T) zi

where v e Y is the input and w e U is the output. If the BCS (3.5) is related to the

SCS (3.1) as in section 2.2, then the POP (3.6) is related to the SCS (3.2) as in section

2.3. This means that the following diagram commutes.

section 2.2

SCS (3.1) BCS (3.5)

duality duality

4/ section 2.3 jj
scs (3.2) POP (3.6)

?lAk,-rig use of tnis fact we obtain the Ef'llowinq duality relationship between the systems

(3.',) and (3.6) which ran also be proved directly in a straightforward way.
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THEOREM 3.5

(i) The BCS (3.5) satisfies hypothesis (Bk) if and only if the POP (3.6) satisfies 0

hypothesis (Pk) with X = z*, A = A-, = * C = K* for k = 0,1,4. Furthermore, (B2) is

equivalent to (P3) and (B3) is equivalent to (P2). -"

(ii) Suppose that the BCS (3.5) satisfies (B0), that u(°) e L
2
[0,T;U],

x(-) e L
2
[0,T;Z] l W

1
'
2
(0,T;H] and y(-) e L

2
(0,T;Y] satisfy (3.5) and that

v(*) e L
2
[0,T;Y], z(*) e W1

'
2
[0,T;H] and w(.) e L

2
[0,T;U] satisfy (3.6). Then (3.4)

holds.

Finally, we point out that the dual system of the POP

(3.7) x(t) + Oy(t) = Ax(t) + Gu(t), t ) 0, x(0) x.

is the BCS

z(s) = - A z(s) , zCT) z

(3.8) Q z(s) - v(s) , s 4 T ,

w(s) = G z(s) .

where v e Y is the input and w e U is the output.
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4. A PERTURBATION RESULT

In the finite dimensional feedback problem

X Ax + Bu , u Fx

the closed loop input uF(t) = Fe(A+BF)tx0  satisfies the integral equation •

uF(t) = FeAtx 0 + F f eA BuF(sds

In finite dimensions, this equation always has a unique solution. In infinite dimensions

this nice property can break down due to the unboundedness in both operators B and F.

An example for this is provided by the wave equation in section 7.3. Therefore we need a

condition to guarantee that the operator I - T(t) is boundedly invertible. Note that in

our case the output operator plays the role of F.

From now on we will assume throughout this section that the SCS (2.1) is well posed,

that the operators B(t), C(t), T(t) are defined as in section 2.1 and that U - Y.

S

LEMMA 4.1

Let T > 0 be fixed. Then I - T(T) is invertible if and only if I - T(t) is

invertible for every t > 0.

PROOF: We fix 0 < t < T and prove that I - T(T) is invertible if and only if

I - T(t) is invertible. At various places we use Lemma 2.6 without stating it explicitly.

Let us first assume that I - T(T) is invertible. Then u - T(t)u = 0, u e L2 [0,t;U],

implies that 0 u = o T(t)u = T(T)G u and hence 0 t = 0 which means that u = 0. Given

y e L2 [0,t;U], there exists a u e L2 (0,T;U] with u - T(T)u - a y. This implies

Ttu P Tt T(T)u T(T-t)PTt u and hence PT tu = 0. Therefore u = 0u satisfies

3tU = u and thus a y = 0 u - T(T)C u = 0 (u - T(t)u) which implies y = u - T(t)u. S
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conversely suppose that I - T(t) is invertible and w.l.o.g. 0 < t < T ( 2t. Then

it follows from what we just proved that I - T(T-t) is invertible. Assume first that

u e L2 [0,T;U] satisfies u - T(T)u. Then p - PtT(T)u - T(t)p tu and hence p tu 0

which implies u- _t0T-tU, We conclude that _T-taT-tu0  a;_t T(T-t)O TtU and thus

atu - T(T-t)ou which means that u - % tT ~tu - 0. Secondly, let y e L2 [0,T;U] be

given and choose u0 e L
2 (0,tUl, u1 e L

2 0,T-tiU) such that u0 - T(t)u 0 - Pry and 0

u- T(T-t)u i - 0T-ty + C(T-t)8(t)u0 . Then it follows from Leana 2.6 that

u a .tu1 +pu satisfies u - T(T)u - y. C

THEOREM 4.2

Suppose that the SCS (2.1) is well posed, that U - Y and that I - T(t) e L(L2 (0,t;U])

is boundedly invertible for t > 0. Then the bounded linear operators

(4.1) SF(t) S(t) + B(t)[I-T(t)]- C(t) e L(H), t > 0

define a strongly continuous semigroup. Moreover,

(42 eftxo St)X0 + ft S(tS)BUF(s;x0)ds .. "00
(4.2) SF(t)xo0  ~~ 0 +1S~-)u~~Od

for x0 e H and t ) 0 where the closed loop input uF(.;x 0 ) e L
2 [0,T;U] is defined by

FF 0u F(,;x ) 0 [I-T(T)]'IC(T).0 ,

PROOF: If follows from Lemma 2.6 (iii) that

Pt [I-TCT)]-C(T) [ [I-T(t)]- ptC(T) - [I-T(t)]- C(t)

for 0 4 t 4 T. This proves equation (4.2) and the strong continuity of sF(t) in H

(Lemma 2.5). It follows also from Lemma 2.6 that C TtT(T) T(T-t)cT- t + C(T-t)B(t)p •

and hence

-. . - .
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O I-I(T).- fi-T(T-t)]- a
r-t T-t

I(t T T. Putting things together, we obtain again using Leimma 2.6 that -

S F(T) = S(T) * (T)1I-T(Tfl 
1
C(T)

= S(T-t)]S(t)'-5(t)p [1-T(T)]- C(T)]

+ 1(T-t)o T- I-T(T)] -)C(T)

=S(T-t)S F t) + 1(T-t)[I-T(T-t)] - a T C(T)

+ S(T-t)[II(T-t)]
1
'C(T-t)B(t)[I-T(t)V-'C(t)

= fS(T-t) + B(T-t)[I-T(T-t)1 1
C(T-t)]S (t)

F

= S (T-t)S (t)
F F

is proves the Theorem. L;

The next theorem is concerned with the properties if the infinitesimal generator AF

the feedback semigroup S F("'~

E/FiE.M 4. 3

Let the assumption f Thieorem 4.2 bp. satisfied and let W F C H denote the linear

bapaceof all KO(1 H -for which there- exssa e U and a pi (Y (A) such -that

3)Ax 0 Bt R P H, uO - CUPI-A) (Wx O-Ax OBu0 )+ T u0

on n e fl 1lowin n, tat ementF I 1 ds



(iii) If x e W(t) then (x,P(t)x) e W and

(F(t)x,K(t)x) = F(x,P(t)x)

0 t I T. Furthermore the following equation holds for 0 < t < T and x,z e w(t)

) <z,P(t)x> = jT <J((,t)z,P(T)(,t)Z), F(O(T,t)x,P(T)(T,t)X)>ux d T

t Uxy

Theorem 5.1 and Lemma 5.4. El

An essential feature of the above Theorem is that the feedback operator

e L(W(t),U) is unbounded with respect to H and will in general have no bounded

tsion. Furthermore, it is important to note that F(t)x e U depends not only on

but also on x itself (see equation (5.19)). This change to the product space

IxH is the key feature in equation (5.20) which may be considered as a generalized

on of the integral Riccati equation (compare CURTAIN-PRITCHARD [6], GIBSON [17],

:HARD-SALAMON (34]). If the input and output operators B and C are bounded with B

!ct to H then F(t) is bounded as well and furthermore W(t) = W in that case. The

!r follows from equation (5.5) in connection with the fact that the operator

(T)T(T) is boundedly invertible on W
1
'
2
(0,T;U] if B and C are bounded.

tunately we were not able to prove in general that W(t) is dense in H and leave

as a con3ecture. Another interesting open question is whether there is a way to

!rentiate equation (5.20) in order to derive some kind of a differential Riccati

.ion for the operator P(t). A question which we have not addressed is the uniqueness

he solution operator P(t) of (5.20). Finally we point Out that a cost functional

an (arbitrary nonnegative) additional weighting term on the final state x(T) can be

ed in an analogous way as presented in this section.
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H H2Ix0 MlAx0+Bu0 + |C Yl1 foH ~) weeFtx 0 eUady r

chosen such that (5.9) holds with Z, - 0 and T replaced by T-t (see Remark 5.3 (i)).

Then F(t) e L(W(t),U), A+BF(t) e L(W(t),H) and we define K(t) e L(W(t),Y) by

(5.14) K(t) - C(I-A) (I-A-BF(t)) + T F(t)

for 0 & t ( T. Finally, we define 0(t,s) for 0 4 a 4 t 4 T by

(5.15) (t,s) [I 01 S(t-sT-s) [I]

THEOREM 5.5

Suppose that the SCS (5.2) is well posed and let YO e H be given. Then the

following statements hold.

(i) x 0 e w(o) if and only if u('ix0 ) e W1,2 0,TiU], y(*Ix 0 ) e W
1 '2 [0,TiY],

x(';x 0 ) e CI[O,T;H], z(*;x 0 ) e C'[0,T;H]. If xe e W(O) then x(t) e W(t) for 0 4 t C T

and

(5.16) u(t;x 0 ) - F(t)x(tix 0 ), y(t;x0 ) X K(t)x(t;x0 )

(ii) The operator *(t,s) e L(H) n L(W(s),W(t)) satisfies *(t, )0(r,s) = 0(t,s), S

O(s,s) = I and

(5.17) x(tlx0 ) 0 *(ts)X(SIx 0 )

for 0 4 s T C t 4 T. If x e W(s) then 0(-,s)x e Cl[s,TIHI and

(5.18) d/dt *(t,s)x [A+BF(t)]O(t,s)x 0(t,s)[A+BF(s)]x

-49-
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)F: It follows from (5.5) that

x (t) = S (t) X0 - 8(t)[I +r(t)rT(t) Il(T* (t) C(t) xO +C(t) t))

z(t) S*(T-t)zl + C*Tt[+(-)*Tt]'C(-~~)TTtB(-~l

0 (t. C T. This proves (5.11). in order to prove statement (ii) let us first assume

t x(*) e C [O,THL, z(*) e C1 (G,TH], u(-) e W1'2f0,T;U], y(*) e W1 ,2 (0,T;Yj. Then it

lowa from Lemma 2.5 and Lemma 3.2 that (5.9) holds with UO= u(O), yj y(T).

versely, assume that (x0 ,zl) e W(T), (u0 ,yj) - F(T)(x0 ,zl) and define

U~t) - u0 + f t u(81T,Ax +Bu0 -A* z-Cy )ds

Y~t) Y jT y(s,1',Ax +Bu ,-A* -CY d
yt =y 1 - t a I - 1 d

0 t T. Then Leumma 2.5 shows that y(lix0 1 u) e W 
1 , '[0,T;Y] satisfies

y(.;X0 ,u) y(*;Ax 0 +Bu0 ,u)

=y(u;Ax +Bu0 ,-A z -C Y)

0 1 1

thermore, it follows from (5.9;2) that y(O) y(0;xoiu) and hence y(-) y(.;x0,u).

logous arguments using Lemma 3.2 and (5.901) show that u(-) =-w(*;z 1 ,y). Hence

and y(l) satisfy (5.4) and we conclude that uC') = U(.;T,xz 1 ) and

=y(*;T,X 0,z I). This proves the statements (ii) and (iii). Finally, statement (iv)

an operator theoretic reformulation of statement (iii). 03

In order to apply the previous Lemma to the linear quadratic control problem we

roduce the Hilbert space W(t) [x 0 01 x,)8WTt~wt h om ' W(t)

-48-



.0

(5.10)2) Q(t) B (t)(I+ (t)T(t) r'5B(t)

(5.10;3) R(t) -5(t)(I4T*(t)T(t)]V'T*(t)C(t)

0

for 0 4 t 4 T.

LEMMA 5.4

Suppose that the SCS (5.2) is well posed, let (x01z1 ) e Hf be given and let u(t)

u(tjT,x0 ,z1 ), y(t) , y(t,x2c,zj), X(t) - x(tiT,x0 ,zj), z(t) -z(t:T,x 01 zl) be defined as-

above. Thlen the following statements hold.

(i) For everX t e [0,T)

(5.11) (x(t) ,z(t) ) =S(tlT)(x 01 zl) .

(ii) (x0.zl) e W(T) if arnd only if x(-) e Ct [0,TiHJ, z(*) 8C'[0,T;Hl,

u(*) e w 1 ,2 (0,TiH], y(*) e W1'2 (0,TjY].

(iii) If (x0.z1 ) e W(T) then ;(t), 1(t), ;(t), (t) are the weak solutions of

(5.2) and (5.3) with Cxo9 z1 ) replaced by (A+BF(T))(x0,z1  moreover, (x(s),z(t)) e W(t-9)

for 0 4 9 4 t (T and 

S

(5.12) (u(s),y(t)) e F(t-s)(x(s),z(t))

(iv) if (x0 ,zl) e W(T), then S(*;T)(X0 ,z ) e C[D,TWJ nl c' 0,Tiffl and -

d/dt S(tT)(x0 ,Z 1) - [A+BFIS(tlT)(X0,z 1)

- S(tT)(A.8F(T)J(x,z 1

for 0 4 t 4 T.
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u0 + J u(t;T,Ax0 +Bu 0 ,-A z -C y )dt

(59 1)=-B~ (PI-A N A*.1- z1 C y) T*y

-1 j y(t;T,Ax 0+Bu 0,-A zI-C I )dt

(5.9;2)

=C(IJI-A) -1(UX -Ax -Bu ) + T Pu

REM ARKS 5.3

(i) Note that equations (5.9) are independent of V X O(A). Furthermore, the next

Lemma shows that uO e U and y, e Y are uniquely determined by (5.9) if (x0 ,z1 ) e W(T)

is qiven. Finally, uO and y, depend continuously on xO e H, Ax0 + Buo e H, z, e H,

A~z + C*yi e H. This allows us to make W(T) into a Hilbert space by defining

I(x ,z )1 2 =Ix * 2 + IAx +Bu 1i2 + 1z 1 2 + IA z +CyI
2

0' 1 W(T) 0 H 0 O H I H 1 1H

for (xo.zl) e W(T) where uO e U and y, e Y are chosen such that (5.9) holds.S

(ii) The operator F(T) W(T) + U defined by F(T)(X0 ,zl) =(u 0,yl) for

(x0 ,zl) e W(T), (u0 ,yI) e U satisfying (5.9) is bounded and linear.

(iii) A+BF(T) is i~ bounded operator from W(T) into H and a closed operator on H{.

The norm on W(T) is prec sely the graph norm of A+BF(T). Unfortunately we were not able

to show that W(T) is dense in H1 and leave this as a conjecture.

(iv) Note that W(O) W and F(O) =F

0
Finally, we introduce the operator S(t;T) e L(H) by defining

(51;)S(t;T) I-~t 1~) 1 Ss~~ (T-t)-R (T-t]S
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<yOyO> - - <Y0 ,CI I-A) -Bu 0 > + <Y0 ,T u0> = - <u0 ,u0 >

which implies u0 = 0, y0 = 0. Now observe that the unique solution (u0 ,y0 ) I U of (5.8)

depends continuously on x0 e H, Ax0 + Bu0 e H, z0 e H, A*z0 + Cy 0 e H. This implies that

the norm in (iii) makes W into a Hilbert space and (equivalently) that A + BF: W + H is

a closed operator on H. Note that the norm on W is precisely the graph norm of A + BF

Furthermore, we obtain F e L(W,U).

It remains to show that W is dense in H. For this purpose let x0 e H,

u(*) e L2 [0,T;U] be given and let x(*) e C[0,T;H] n W1 ,2[0,TIV] and y(*) e L2 [0,TjY]

be the unique solution and output, respectively, of (5.2) in the weak sense. Then

x T x(t)dt, U j T u(t)dt, y f y(t)dt

satisfy Ax+Bu x(T) - x0 e H and y . C(uI-A) (px-Ax-Bu) + T u. The latter equation

has first to be established for u(,) e W1 '2 [0,TU] with Axo + Bu(0) e H and follows in

general from continuous dependence. Since the same arguments apply to system (5.3) we get

I O ......

Y f x(tT,xo,zj)dt, 0T z(tlTx ,z)dt) e W

for all (x0 ,z1) e H and all T > 0. Therefore W is dense in H. ..

The next and most important step in the development of this section is the characteri-

zation of those pairs x0 ,z1  for which the corresponding solutions of (5.4) are

differentiable. For this purpose we introduce the subspace W(T) C H of all those pairs

(xo,z 1 ) e W for which there exists a pair (u0 ,y1 ) e U such that Ax0 + Bu0 e H,

A*zj + Ceyj e H and the following equations hold for some V O(A)
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For notational purposes we first introduce the spaces H H x H, V V xW*

U =U x Y and the operators A e L(H,V), 8 e L(U,V) by

Furthermore, we define W C H to be the linear subspace of all pairs (x0 ,z0 ) e H for0

which there exists a pair (u0 ,y0 ) e U such that Ax0 + Boe H, A*z0 + Cyo e H and the

following equations hold for some v,0 a (A)

U0 -(W-A IjzO-A Cy 0) T TYo

(5.8)&::: ::1 :: -* *S

Yo .C~ij-A) (pxO-A 0-B 0 T 1 uS

LEMKA 5.2

Mi If (5.6) holds for some U O (A) then it holds for every p,4 O0(A).

(ii) Given (x0 ,z0 ) e W, the pair (u0 ,y0 ) e U is uniquely determined by (5.6) and

will be denoted by (u0,y0 ) =F(x 0 ,z0 ).0

(iii) The norm

I(x z)1l2 =Ix 1 2 + KAx +Bu 1*2 + 1z 12 + IAz +C*y 12
O'OW 0OH 0 O H O H 0 O H

for (x0 ,z0 ) e W, (u0 ,y0 ) = F(x0 ,z0 ) makes W into a Hilbert space with a continuous

dense injection into H.

(iv) F e L(W, U) and A +BFe L(W, H) . moreover, A + BF is a closed operator on H.

PR~OOF: Statement (i) follows straightforwardly from the compatibility condition (2.3). In

order to establish statement (ii) suppose that (5.8) holds with x 0  Z 0  0. Then

Buo e H, c yo e H and
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The existence and uniqueness of the optimal control follows from the fact that this

quadratic functional is nondegenerate. Since its derivative vanishes at the optimal

control u(°) - u(°x 0) e L
2[0,T;U] we get

S-T(T)C(cT)x o +r (T)u)

and hence u is characterized by (5.4) with z1 - 0. This implies y(,) y( ;x0 ) =

[I+T(T)T*(T)]-IC(T)x0 and hence z(0) - C*(T)[I+T(T)T*(T)]-'C(T)xo - P(O)x 0  (Corollary

3.4). In general equation (5.6) follows from the fact that T > 0 can be chosen

arbitrarily together with the uniqueness of the optimal control. Finally, we get

J(u) - <y,C(T)x0 +T(T)u> + <u,u>

- <yC(T)Xo> + <u+T*(T)y,u> "

- <[I+r(T)r'(T)-C(T)xo,C(T)xo>

- <x0 ,P(0)x0
>  

-

0

This proves the Theorem. "

The aim of this section is to represent the optimal control in feedback form and to

derive a Riccati type equation for the optimal cost operator P(t). The main difficulty in

this direction is to give a meaning to the operator B P(t) since B* is unbounded and

P(t) will in general have no smoothing properties. This may lead to an unbounded feedback

operator as was first observed by LASIECKA-TRIGGIANI (27] in the context of the higher

dimensional wave equation with Dirichlet boundary control. Another problem arises from the

fact that th. operator T is needed for the representation of the output of the dual

system. We will overcome these difficulties by means of studying the differentiable

solutions of the coupled system (5.2), (5.3).
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depend continuously on all four variables and are, of course, linear in (x0,z1 ) e H x H.

For our first result on the linear quadratic control problem we need the operator

P(t) e L(H) defined by

(5.6) P (t) -C (T-t)[I+ TT-t) T*(T-t)I C (T-t)

for 0 4 t T.

THEOREM 5.1

Suppose that the SCS (5.2) is well posed. Then for every x0 e H there exists a

unique optimal control u(Ix 0 ) e L
2 C0,TiU] which minimizes the cost functional (5.1)

subject to (5.2). This optimal control is characterized by (5.4) with z,= 0. The

optimal output of (5.2) is denoted by y(t~x0 ) and the corresponding weak solutions--

x(t~x0 ) and z(tixo) of (5.2) and (5.3), respectively, satisfy

(5.6) z(t;xo) =P(t)x(tlx 0 )

for. O t T. The optimal cost is given by

J(u) x,(x0>H

(5.7)

0 0L 2 0,TYl

PROOF: The cost functional J L L2 (0,T;U] R can be written in the form

J(u) I C(T)x0 + T(T)uI 
2  + 3u1 2

02 2L 10,T;Y] L [0,T;Ul

,x0C (T)C(T)x 0> + 2<u,T (T)C(T)x 0 > +<, TTTuu
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5. THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM

In this section we consider the problem of minimizing the quadratic cost functional 0

(5.1)I [() l ~~y(t)12 + Eu(t),2Idt

where y(t) is the weak output (Definition 2.4) of the well posed SCS

x(t) = Ax(t) + Bu(t), x(O) - x e H
(5.2)

y(t) = C(OJI-A)- 1 (Vx(t)-x(t)) + T U(t), t ) 0

corresponding to u( ° ) e L2 (0,TiU]. The optimal control will be characterized in terms of

the dual SCS

zt) = - A*z(t) - C*y(t), z(T) = e H

(5.3)

u(t) - B (PI-A)O( z(t)+z(t)) - T u(t), t • T

which is again to be understood in its weak form (Definition 3.1). Making use of the

operators B(T), C(T), T(t) introduced in section 2.1 we can rewrite the coupled system

(5.2), (5.3) in the equivalent form

u - a(T)z - My

(5.4) -.

y " C(T)x0 + T(T)u • S

For all x0 e H, z, e H these equations have a unique solution pair u(-)

u(.;T,x0 ,z I) e L
2 [0,TIUI, y(*) y(.;T,XoZ 1 ) e L

2 [O,TIY] given by

u(';T,x0 ,z1 ) = -[I+T*(T)T(T)] -(T*(t)C(T)x 0 + B (T)z

(5.5)

y(°;T,x0 ,z 1) = [I+T(T)T (T)) 1 (C(T)x0 - T(T)8 (T)z1

The corresponding solutions x(t;T,x0 ,z1 ) e H of (5.2) and z(tiT,x0 ,z1 ) e H of (5.3)
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PROOF: It follows from (2.8), (2.10), (2.11) that x0e H and uo e u satisfy (4.3) if

jand only if x0e z and ro= u0 = Kx0. This proves the statements (i) and (iii)..

Furthermore, the equations (4.4) and (4.5) show that KSF C )x0 =uF( O = [i-T(To))
1
T(T)x0

for x0e w.. This implies (4.7).0
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Buo ~'0 and T PU0 u o and define xo (IJI-A) BU 0 ~'0. Then px 0 -Ax 0 - u0  0 and

hence (4.3) holds. Therefore x0 e W. C V(AF) and AFxO Ax0 + Eu0 =PX 0. This proves 0.

statement (1). By; duality, we obtain that cl(ranqe (PI-A F) H if and only if

cl(range C) /cl(range (I-T ).This proves statement (ii). In order to prove statement

(iii) suppose that I-T I e L(u) is invertible and choose Z0 e H. Defining uo

CI-T )C(PI-A) -1z0e U and xo- (U1-A)_ (z 0+Bu 0) e H we obtain =o Uxo - Ax0 - Bu0

and hence (4.3) holds. This implies x0 e WF and 20 - Px0 - A x0. Therefore jjI-A i

onto. By statement Mi this operator is also one-to-one and hence P X (A ).

Let us now consider the case that the input operator B e L(U,V) is injective and

strictly unbounded with respect to H so that the SCS (2.1) can be rewritten as a ECS of

the form (2.12). Then the statements of Theorem 4.3 can be reformulated in a more elegant

way.S

COROLLARY 4.5

Let the assumptions of Theorem 4.2 be satisfied and suppose that the BCS (2.12) is

related to the SCS (2.1) through (2.8), (2.10), (2.11), (2.15). Then the following

statements hold.

(i fx F=(x e zjrx - x then x0 e V(AF and A~x A x0  Furthermiore,

S (.)x e C[0,TZ) l nC1[0,TH] satisfies the equations

F 0

{d/dt S.F(t)xo - ASF(t)x 0 S F tAX0

(4.6)
s F (t)xo KS ~F(t)xO, t >0

(ii) There exists a constant c > 0 such that the following inequality holds for

all x0 e WF

(.)jT IKSdt c 2

(.)0 IiF tWx01U Ot4cx01H .

(iii) If either U is finite dimensional or K e L(H,Y). :n V(AF) WF'
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If {(u-T u,Bu)Iu e U} C U x V is a closed subspace and x0 e D(AF) then it follows

from (4.4), (4.5) with t approaching zero that the pair (C(PI-A)-1 (xO-AFx0), AFX0 -Ax0 )

lies in this subspace. But this implies x0 e WF.

If C e L(HY) and T C(II-A) B, then the closed loop input is always given by

UF(t;xO) = CSF(t)xo and is in particular continuous for t ) 0. Hence it follows from

statement (ii) that (AF) = wF. 0

Unfortunately we were not able to determine the domain of AF in general and it does

not seem likely that D(AF) is always equal to WF. Under the assumption that either the

input or the output operator is bounded with respect to H the previous theorems have been

established in (40]. Furthermore, the operator I - T(t) is always invertible in these

cases.

The next Lemma establishes some elementary relations between the closed loop spectrum

and the properties of T In finite dimensions these relations provide the basis for the

proof of the Nyquist criterion for the stability of feedback systems.

LEMMA 4.4

Let the assumptions of Theorem 4.2 be satisfied and let P -d 0(A) be given. Then the

following statements hold.

(i) 1 e PO(AF) if and only if ker (I-T ) Z ker B. Furthermore, AFXO = x0 if --

and only if there exists a u0 e u such that Tu 0 - u0  a.d x0 - (I-A)- Bu0 .

(ii) u e RO(A F ) if and only if ker (I-T ) C ker B and cl(range C)

cl(range (I-T)).

(iii) If. 1 O(T ) then o(AF) and D(AF) - WF.

PROOF: If 0 # x0 e D(A F) with AFX 0 . Jx0  then S(t)x0 = e e W for t > 0

(Theorem 4.3 (ii)) and hence x0 e WF. Thus there exists a u0 e U such that (4.3) holds
-1

and therefore Wx 0 = AFxO = Ax0 + Bu0  and u0 - Tu 0 = C(VI-A) (UxOAFx) = 0. Since - 9

U f 0(A) we conclude that Bu0 0 0 and thus ker (I-T ) A ker B. Conversely suppose that

-38-
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(i) If x0 e WF, u0 e u, P # 0(A) satisfy (4.3) then x0 e D(A F ) and AFX 0  Ax0

+ Buo . Furthermore, uF(i;x0) e w1'2 (0,T;U], SF(.)x 0 e CI[O,T;H] satisfy

UF(t;x0) - uF(t;AFXO), UF(O;xO) u0  and for t > 0

(4.4) d/dt SF(t)x0 ASF(t)x0 + BUF(t;xo) SF(t)AFxo

(4.5) UF(tgxo) = C(VI-A)- SF (t)(II-A F )x0 + Tu(t~x 0 )

(ii) If xo e V(AF ) then SF(t)x0 e WF and (4.4), (4.5) hold for all t > 0.

Furthermore, x0 e WF if and only if x0 e V(AF) and UF(t;xO) is continuous at t 0. 6

(iii) WF is dense in H.

(iv) If {(u-T u,Bu)lu e ul is a closed subspace of U x V then D(AF) - WF.

(v) If C e L(H,Y) and T . C(IJI-A)- B then D(AF) - WF -

PROOF: Suppose that X0 e H, u0 e u, ij U(A) satisfy (4.3) and define u(s) e W1 '2 [0,T;U]

by

u(t) u0 + ft v(s)ds, v(-) [I-T(T)]-IC(T)[Ax0 +Bu0]

Then it follows from Lemma 2.5 that y(o;x 0,u) e w
1'2 10,T;U] with y(0,x 0 ,u) "

C(VI-A) 1(x 0 -Ax0 -Bu0 ) + Tu 0 = u0  and y(*,x0 ,u) 
= y(*;Ax0 +Bu0 ,v) - C(T)(Ax0 +Bu0 ) +

T(T)v = v. Therefore we obtain from the definition of u(.) that u(-) y(*;x 0 ,u) =

C(T)x0 + T(T)u. But this implies u(t) = UF(t;xo) and, by (4.2), SF(t)xo = x(t;x 0 ,u)

for 0 4 t < T. Hence statement (i) follows from Lemma 2.5.

If x0 e V(AF) then SF (')x0 . x(*x 0 ,u F(*;x0 )) e C
1 [0,T;H] and hence it follows

from Lemma 2.5 (ii) that (4.4) and (4.5) hold for almost every t > 0. Hence SF(t)xo e WF

for almost every t > 0 and statement (ii) follows from the fact that, by (i), WF is

invariant under SF(t).

The density of WF in H follows immediately from statement (ii).
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We close this section with the discussion of four interesting special cases.

COROLLARY 5.6 (bounded input operator)

Suppose that the SCS (5.2) is well posed, that B e L(UH) and that

T C(PI-A) B. Then the following statements hold.

(i) W - ((xoz ) e W x HIA*zO + C*CX0 e H1 and F(x0 ,zO ) = (-B*zo,CxO ) for S

(X0 ,z0 ) e W. The space W(t) consists of all x0 e W for which there exists a yl e Y

such that C y1 e H and

B*P(t)xo . T-t u(SIT-t,Ax -BB*P(t)xo,*Y )ds

(5.21)

Y, - Cx: + fo- t y(siT-tAxo-BB P(t)x 0 '-C y )ds

Morr~ver F(t)x - B*P(t)x and X(t)x Cx for- x e W(t).

(ii) The optimal control is always continuous and characterized by the bounded

feedback law

(5.22) u(tlx0 ) = - B*P(t)x(t;x0 )

Moreover, the following equation holds for all x e H and 0 4s t ( T -"

D(t,s)x = S(t-s)x - Jt S(t-T)BB*P(T)0(T,a)x dT

(5.23)

= S(t-s)x - I
t 

$(t,t)BB*P(t)S(r-s)x dT

(iii) The following equation holds for all t e [0,T] and all x,z e W

_e
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<z,P(t)x> < CS(T-t)Z,CS(T-t)X>

(5.24) 0

IT <BP(T)S(t-t)z,B*P(T)S(T-t)x>dT

(iv) If x e W then P(*)x e c 1[0,T;W]l and the following equation holds for

0 t 4T0

(5.25) d/dt P(t)x + A*P(t)x + P(t)Ax- P(t)BB*P(t)x + C*Cx 0

PROOF: It follows from (5.4) and (5.6) that u(t;'x0 ) =-B*z(t~x 0 ) =-B*P(t)x(tlx 0 ) for

* all t e [0,T] and all X0e H. This proves statement (ii). Statement Mi follows from

statement (ii) and equation (5.9).

* In order to prove statement (iii) we make use of the fact that the operator

j(PI-A)- converges strongly to the identity in L(H) as 0 approaches + -- We replace

c e L(W,Y) by C1 . liC(IUI-A) 1e L(H,Y) and denote by C~ VCT), T 4(T), PuV (t), 0 4 t 4 T

the operators which replace C(T), T(T), P(t), respectively. Using hypothesis C S3) inS

section 2.1 one shows easily that the operators C (T),C (T),T (T), T (T) converge to

*C(T), C*(T), T(T), T*(T), respectively, in the strong operator topology. In the case of

the operator T(T) it is useful to consider first the case B -I, U -H and to recall

that the SCS (5.2) is wellposed in this case by duality. Hence the operator P Ct)

converges to P(t) in the strong operator topology. It is well known [6], [17], [34] that

*the operators P Ct) satisfy equation (5.24) with C replaced by C .Since IP (t)lV
uP V (0)1 we can apply the dominated convergence theorem to these equations and get (5.24).

Now statement (iv) can be established by differentiating (5.24) as in [34]. in a

straightforward way we obtain the following weak form of (5.25) for x,z e V(A2

d/dt <z,P(t)x> + <Ax,P(t)> + <P(t)z,Ax> - B*P(t)Z,B*P(t)x> + <Cz,Cx> =0

-52-



By continuous extension this equation holds for all x,z e w. Furthermore, the equation

can be rewritten in the form

<zPtx z,JT' [A*P(s)x+P(s)Ax-P(s)BB*P(s).+C*Cxlds) >

This proves (5.25). 0

The differential Riccati equation (5.25) in Corollary 5.4 has been established in [34]

under the additional assumption that B e L(TJ,H) satisfies hypothesis (H2) with H

replaced by W. Under this condition also the uniqueness for nonnegative solutions of

(5.25) has been shown in [34J and one can easily see that 4(t,s) e L(W). It seems that

the latter does not hold in general under the assumptions of Corollary 5.4

COROLLARY 5.7 (bounded output operator)

Suppose that the SCS (5.2) is well posed and that C e L(H,Y) and TV C(IiI-A) B.

Then the following statements hold.

(i) W3- t(x0 ,z) e H x V Iix0- BBE 0 e H) and F NO, zo) -(-B'z 0 1 Cx0 ) forE

(x0 1 z0 ) e W3. Trhe space W(t) consists of all x0 8 H for which there exist uo e u,.

Y, Y such that Ax0 + Eu0 e H and

u+ 0T tusT-t,Ax 0+BUI-C y)do 0

(5.26).. .

y Cx0  J~tysT-t,A +Bu,,-Cy)s

If these equations hold, then P(t)xo e v and F(t)xo B*P(t)xo uo and K(t)x 0  CX0 .

(ii) The following equation holds for all x,z e H and 0 4 t 4 T

(5.27) <z,P(t)x> ITJ <C0(r,t)z,CS(T-t)x>dr
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(iii) The following equation holds for 0 4 t ( T and x,z e w(t)

<z,P(t)x> = <CO(r,t)z,CO(T,t)x>dT

(5.28)

<B P(T)O(T,t)z,B P(T)(T,t)x>dT

tS

PROOF: It follows from Theorem 5.3 that <x0 ,P(0)x0 > <y(.,x0 ),C(T)xo>. This proves

(5.27) for t = 0 and x = z. In general (5.27) follows from the fact that P(t) is self

adjoint and plays the role of P(M) for the control problem on the time interval [t,T). S

The statements (i) and (iii) follow from (5.9) and Theorem 5.5. 0

COROLLARY 5.8 (strictly unbounded input operator)

Suppose that the SCS (5.2) is well posed, that B is injective and strictly unbounded 0

with respect to H and that the operators A, r, K are related to the SCS (5.2) as in

section 2.2. Then the following statements hold.

(i) W = (x oZ o) e z x H'4*A o + K + rrx 0  a.d F(xo,zo) = (rx0 , 0 )--

for (xo,z O ) e W. The space W(t) consists of all x0 e Z for which there exist u1 e u

and yl e Y such that K y, + r'u1 e H and

rx0 + fT- u(s;T-t,Ax01-K~ 1 ru 1  = l I

(5.29)

Kx0 + jTt y(sgT-t,Ax0 ,_KY 1_r*U) =l

If these equations hold then A P(t)x0 + K *Kx0 + r*rx0 e H and F(t)x= rx0,

K(t)x0 =KX 0.

(ii) For every x0 e H the adjoint state z(*) z(';x0 ) e C[0,T;H] n W ,2 [0,T;Z*]

2nd the optimal control u(-) = u(*;x 0 ) e L
2 [0,T;U] and the optimal output y(-) =

y(*;x 0 ) e L
2 [0,T;Y] satisfy the equation

-54-
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(5.31) t) ax+ r u(t) u (t)- yt), K (t) xo 0

(iii) The following equation holds for all t e [0,T] and all x,z e w(t)

<z,P(t)x:> - fT cKIICT~t)zK.4CrTt)x> dT

(5.32)

+ jT <ro(T,t)z,ro(T,t)x> dT
t U

PROOF: Statement Mi follows from (5.9) together with the fact that A*zl + cy1 e H and

W iI-A NZ (U-A I~ I1  + Ty - -I u, is equivalent to A zI+ K y1 + ru I e H (Lemma

2.2). The remaining assertions of the Corollary follow directly from Theorem 5.5. 0

COROLLARY 5.9 (strictly unbounded output operator)

Suppose that the SCS (5.2) is well posed, that C has a dense range and is strictly

unbounded with respect to H and that the operators A, Q~, G are-related to the SCS (5.2)

as in section 2.3. Then the following statements hold.

Wi W-(Cxo z e m H x XjAx 0 Gz 0 (Sfl z a8 H) and F(x 0 ,z 0 ) ( -G*Zo 0~

for (x01 z0 ) e W. The space W(t) consists of all x0 e H for which there exist uo e U

and yo e Y such that Ax 0+ Gu 0 IoeHand

(53){ u + jT-t u(s;T-t,Ax +Gu -Uy0 ,0)ds =0

+~ IT-t y~s;T-t,Ax +Gu Q(y0,0)ds =0
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Iftes quations hold then P(t)xo e x an F(t)xo -G*P(t)xo u0  n otx

Q P(t)x0  0

(ii) For every x0 e H the optimal state trajectory x(*) -x(*;x 0  e

C [0,T;H] nlw1'2 [0,T;X) and the optimal control u(*) =u(*;x 0 e L2[0,T;U] and the

00

(5.34) ;(t) + sly(t) Ax(t) + Gu~t), x(O) X0

If moreover x0 e w(0) then x0) e C1 [0,TH] and z(*) =z(*$x 0 ) e C[0,Tx 5] fl C[0,T;H]

satisfies the equation

(5.35) j~t) =-A*:(t), (Q z(t) =y(t), u~t) =-*z(t) z(T) =0

(iii) The following equation holds for all t e [0,T] and all x,z e w(t)

<z,P(t)z> It <Q) P(r)*(r,t)z,l P(r)O(r,t)x> Ydr

(5.36)

+ IT GP(T)-D(r,t)z, G*P(i )O(T,t)X> dr
t U

PROOF: Lemmna 2.12 and Theorem 5.5. 0

The linear quadratic control problem (LrCP) for infinite dimensional systems with

unbounded control and observation has previously been studied e.g. by LUKES-RUSSELL [30],

RUSSELL [37], LIONS (28], BALAKRISHNAN [2], LASIECKA-TRIGGIANI [25], [27], FLANDOLI [13],

SORINE [42], [43] for various classes of partial differential equations (PDE) and by

ICHIKAWA (20], DATKO [9], DELFOUR [10], ITO-TARN [21], PRITCHARD-SALAMON [34], KARRAKCHOU

[221, for retarded and neutral functional differential equations (FDE). A general semi-

group theoretic framework for the LQCP which allows for unbounded input and output

operators and applies to large classes of PDEs and FDEs has been presented in [34].
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However the "degree of unboundedness" in the input and output operators which can be

allowed in (34], is not general enough to cover all cases of interest. In the theory .

developed in this section there are no requirements on the operators A, B, C, T other

than wellposedness. In this sense our approach includes all previous results on the LQCP

for wellposed control systems. However, more specific conclusions and results are

certainly possible under more restrictive assumptions. In the case of analytic semigroups

for example we refer to FLANDOLI (13], SORINE [42], [43], LASIECKA-TRIGGIANI [25], PaPRATO

[81 and for the LQCP on the infinite time interval under stronger hypotheses to PRITCHARD-

SALAMON 134]. Moreover, we mention the recent paper by FLANDOLI (14] which contains a very

nice approach to the LQCP for non well posed Cauchy problems.

T,
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6. FUNCTIONAL DIFFERENTIAL EQUATIONS

The aim of this section is to show how a very general class of neutral functional

differential equations (NFDE) fits into the framework of section 2 so that the results of

sections 4 and 5 can be applied, Consider the NFDE

fd/dt (x(t)-tdx t-Gu ) Lxt But

(6.1) yt

where u(t) e mm, x(t) e EP, y(t) e RP and xt is defined by x tr) xt) fo

-h 4 T 4 0 where 0 < h < ft. Correspondingly L, M, B, G, C, D are bounded, linear

functionals on the appropriate spaces of continiuous functions. They can be represented in

the form

L4 h dn(r)cP(-xr), MP = dP*(T)1q-T), W~ fhdT-(T

Bt 1 d8(r)U-r), G& =h dy(T) (-T), D =h d6(r)&(-T)

for (p e C[-h,O;RP], t e C[-h,0,IPJ where n, 11, Op Y, Kr6 are normalized matrix

functions of bounded variation, that is they are constant for T h, right continuous

for 0 < T < h and vanish for T 4 0. Note that the expression Lxt -dfl x(t) makes

sense as an L2-function of t if x(*) e L2 [-hT;,JP1. In order to guarantee the existence

and uniqueness for the solutions of (6.1) we will always assume that

(6.2) 11(0) =liM jj(T).

*T+0

Given any control input u(I) e L 2(-h,TFl] a function x(-) e L2[-h,TR'0] is said to be

a solution of (6.1) if the function
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(6.3) q(t) - x(t) - Mxt - Gut# 0 4 t 4 T

is in WI" 2 [0,TiM) and satisfies q(t) = Lxt + But for almost every t e (0,T]. Under

the condition (6.2) it has been shown in [4], [40] that system (6.1), (6.3) admits a unique

solution pair x(o) e L2 [-h,T;Rn], q(*) e W1"2 (0,TjR n] for every input u(-) e L2 [0,T;,")

and every initial condition of the form

(6.4) q(0) (PO
0 

X(T) - I(T), u(T) ( 2(T), -h 4 T < 0

where

P = (P0 1(2) e H - Rn x L
2
[-h,0,30] x L

2
(-h,0;R]

In this section we will be concerned with the problem of finding an abstract evolution

equation which equivalently describes the solutions of (6.1). Such an evolution equation

has been derived for neutral systems with state delays only (G - 0, But = B0 u(t), C - 0,

D - 0) by BURNS-HRRDMAN-STECH [4]. For retarded systems with input delays (M = 0, G - 0, S

C - 0, D - 0) we refer to ICHIKAWA [20], VINTER-KWONG [44], DELFOUR [10], and for neutral

systems with delays either in control or observation to SALAMON [40]. Retarded systems

with simultaneous delays in control and observation (M = 0, G - 0, D - 0) have been for

the first time successfully treated in PRITCHARD-SALAMON [34]. That approach, however, is

not applicable if D # 0 the problem being "too much unboundedness" in the input and

output operators. A state space approach for this class of systems (M = 0, G 0) has

been developed recently by DELFOUR-KARRAKCHOU [11] using the forcing function state concept

which is due to MILLER (31]. We use a different approach to derive an evolution equation

representation for general system of the form (6.1).

In order to reformulate system (6.1) in the framework of section 2.2 we define

S
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Z - {P e HI-P 1 e W 1
2 

[-h,O;R n]I, ~2 e w 1 ,
2 [-h,0;101, 1P 0 p0 (0) -M(P 1 GcP 2

U L * = 1M 2 R

A P-B( , 2p), r~P (0), KP = P W2p

THEOREM 6._1

Let the spaces Z C H and the operators AL e L(Z,H), r e L(z,U), K e L(z,Y) be

defined as above and let (p e z, u(-) e w 1 ,2 [0,T;S'J satisfy (P2 (0) = uCO). Furthermore,

let x(-) e L 2 [-h,T;,Rn], q(*) e w 1 ,2 [0,T;R10], y(1) e L 2 [O,T;UPJ be given and define

(6.5) x(t) (q(t),xt.ut) e H

for 0 't 4 T. Then x(t), q(t), y(t) satisfy (6.1), (6.3), (6.4) if and only if

x(*) e C[0,Tz] nlc [O,T;H] satisfies

(6.6)d/dt, x(t) bi t) : X:' 0):

y(t) =Kx(t)

PROOF: If x(t), w(t), y(t) satisfy (6.1), (6.3), (6.4), then x(*) e w1,2[-h,T;R'e] (see

[40, Theorem 1.2.3]) and moreover u(*) e w 1 ,2 [-h,TRI'J. Now it follows from the shift

property of the term (6.5) that x(*) e C[O,Tzi nl C1[O,T;H] and standard arguments in the

theory of FDEs (e.g. BERNIER-MANITIUS (3], SALAMON [40, Theorem 1.2.6]) show that

d/dt x(t) Ax(t). The equations u(t) =r;, y(t) Kx(t) are obviously satisfied.

Therefore ;(t) satisfies (6.6). The converse implication follows from the fact that the

restriction of A to ker r is the infinitesimal generator of a strongly continuous semi-

group [40, Theorem 1.2.6] and therefore the solutions of (6.6) are unique. 0
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Combining Theorem 6.1 with the existence, uniqueness and continuous dependence results

for the solutions of (6.1) (see e.g. (40, Theorem 1.2.3]) we obtain that the BCS (6.6) is

wel lposed.

In order to derive a satisfactory solution of the linear quadratic control problem we

have to clarify the relation between the dual system of (6.6) and the transposed system of

(6.1). Following (31], (10], (34], (40], (41] we write the transposed NFDE in the form

1(t) = - io - t 
dT(T)z(t+t) - 0- ' dUT(r) ;(t+.t)- t 

dKT(T v(t+T)- *'(t-T)

(6.7) w(t) - - t d(E)z(t+) + dy()(t) + jT - t d6T(T)v(t+r) + 2 (t-T)

0z(T) t , 4 T

where 4 - (l0,(, , 2) e H. The obvious existence, uniqueness and continuous dependence

results hold for the solutions of (6.7) (40, Theorem 1.2.3]. The state of (6.7) at time

t ; 0 is the triple z(t) - (z(t),z t,wt ) e H where zt e L2 (-h,0Rn] and

wt e L2
(-h,01ISP are given by -

T-t-sd (T)Z(t+S+T) + JTat-Sd(T);(t+s+) _s f K l T)v(t+s+T) + (t+s-T) .-

-s -8
( t(s) - d (T)z(t+s+T) + + T-t-d6T(T)v(t+s+t) + *2 (t5sT)

-s.-s

for -h 4 s 4 0. With this definition it follows from standard arguments in the theory of

FDEs that the state x(t) e H of the NFDE (6.1) and the state z(t) e H of the NFDE (6.7)

always satisfy equation (3.4) (see e.g. [41], [40, Theorem 2.3.5] or (34, Proposition

2.4]). Using this fact together with Corollary 3.4 we obtain the following result as an

immediate consequence.

-
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)REM 6. 2

Let ' e H, v() e L 
2 [O,T;RP], z(-) e w 1'2 [O,T;Rn], w(-) e L2 (O,TR 1

PJ be given and

z(t) = z(t),zt,wt) e H be defined by (6.8). Then z(t) and w(t) satisfy (6.7)

almost every t e [0,T] if and only if z(-) e C[O,T;H] nl Wl, 2(O,T;z*] is the Unique

tion of the abstract POP

d/dt z(t) - r*.(t) - ti (t) -K v(t), t 'T, z(T)

We can now transform the ECS (6.6) and the POP (6.9) into their corresponding semi-

p control system as in section 2 and then apply Theorem 5.1. Alternatively, we can use

liary 5.8 directly to obtain that the optimal control uC') -u(*;4) e L 2 [O,TiR"'J

h minimizes the cost functional (5.1) subject to (6.1), (6.3), (6.4) is characterized

he transposed equation (6.7) with =0, w(t) =u(t), v(t) =y(t) (compare KARRAJCCHOU
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7. PARTIAL DIFFERENTIAL EQUATIONS

The aim of this section is to clarify the relation between the framework in section 2

and the one developed by LIONS [281 and LIONS-MAGENES [29) in their classical work.

Although some of the material in this section is known, at some places things are presented

in a slightly different way than usual. Therefore, we feel that a somewhat more elaborate

discussion is appropriate. 0

The semigroup theoretic reformulation of boundary control systems is of course not

new. Earlier work in this direction has been done for example by BALAKRISHNAN [2),

WASHBURN [45], CURTAIN-PRITCHARD [6], LASIECKA-TRIGGIANI (24]. One of the important

insights in [21, (45], is that the input operator is given, roughly speaking, by composing

the infinitesimal generator with the solution operator of an elliptic problem. We find it

convenient to take a slightly different route and introduce the input operator directly on

the basis of a classical duality result (Theorem 7.1 below).

In order to avoid confusion we point out that throughout this section we denote by

V the space introduced by Lions and by Q an open domain in Ti. Furthermore, whenever

the letter A appears in this section it will denote the operator of section 2.2 and not

the Laplacian.

7.*1 PARABOLIC SYSTEMS

Consider the parabolic PDE with Dirichlet boundary control described by the equations

at IPI, o a
at (x,t) + c (-I1 1 D (a D z)x,t) = 0, x e 0, t > 0

(7.1)

D z(x,t) - ui(x,t), x e ap, t > 0, j -0,I...,m-I

on a bounded, open domain 9 l. en  whose boundary aN is a compact orientable

C - manifold. We assume that the coefficients aP (x) are in C (5) and satisfy the

uniform ellipticity condition
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I,~ ~ ao(x) PY cj 
2 , 

x e a, e Rn

some constant c > 0. The functions uj(x,t) are understood as the control inputs and

a the aim of this section to show how system (7.1) fits into the framework of section 2.

Following LIONS [28] and LIONS-MAGENES [29] we first introduce the spaces V H= (n),

2 (), v* - H-m(M) so that

VCHCV*

continuous, dense injections and we define the bilinear form a(-,-) on Hm(Q) by

a (X)'DP*(x)Do(px)dx

(P, e Hm(). Furthermore, we introduce the differential operators L and L* from

1) into L2 (Q) by

LW IPIoi0m (-1)IDP(aP D)

L * -- 1P J 0 4 ( - 1 ) 1 
0  
1D ( a p P Q "

wP,* e H2m (Q). Then the following basic duality result plays a centrol role in this

ion. For the proof we refer to FOLLAND [15, p. 288] in connection with the trace

rem.

REM 7.1

(i) There exist differential operators Bj of order 2m-1-j for j = 0,...,m-,

ned in a neighborhood of aQ, such that the following equation holds for w e Hm(a),

H 2m(00
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ie wellposedness for general systems of the form (7.12) seems to be an open

rt. In fact, a spectral analysis of the case m = 2 in a single space dimension -

tes that the well posedness in the space H = H x V* cannot be expected unless

- 0 for j < m-1. However, in the case m = 1 with L the Laplacian and Dirichlet 0

ry control, that is

2

ax.2
iS

,0 e H2 (Q), the following nice result has been established by LASIECKA-TRIGGIANI

S

4 7.9 [26]

E m - 1 and L e L(H2 (Q),L 2 (9)), B e L(H2 01),L 2(a)) are given by (7.26) then the

.15) satisfies hypothesis (S2) of section 2.1.

e conclude that the SCS (7.15) is in fact well posed if (7.26) holds and C e L(v,V)

t the above results can be applied in this situation. If C I L(V*,V) then the

operator C e L(W,Y) is unbounded with respect to the state space H = H x V . It

to be a reasonable conjecture that the SCS (7.15) is still wellposed for a certain O

Df unbounded output operators.

! also mention the paper by GRAHAM-RUSSELL [18] which is concerned with regularity

ties of the wave equation under Neumann boundary control.

inally, we point out that analogous results on the linear quadratic control problem

aen derived by LASIECKA-TRIGGIANI (27] for system (7.12) with the cost functional

J(u) IT [I z(xt) 2d + 'a" u(xt)2ds(x)]dt
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r~o 0 
+ 1 ~;-,q JAP% ( y))ds 0

00

Then we obtain the following result as a consequence of Theorems 5.2, 5.3 and Corollary

5.8.

COROLLARY 7.8

Suppose that the SCS (7.15) is well posed. Then the following statements hold.

(i) For every (p e H there exists a unique optimal control u(,;iP) e L2!0,TIU]

which miinimizes the cost functional (7.22) suibject to (7.14). This-optimal control is

characterized by (7.20) with ~'=0. The optimal output of (7.14) is denoted by y(ti~p)S

and the corresponding solutions z(t;(W) and w(t; P) of (7.14) and (7.20), respectively,

satisfy

(7.24) (-w(t;(P)-Cy(t(P),w(t;0p) f(t)(Z(tIp1,z(tcP))

for 0 (t T. The optimal cost is given by

(7.25) J(u(*;P)) =<(P,1I(0)4P>
H, H

(ii) (Pe W(O) if and only if u(*;p) e8 W1 ,2 (0,TiUJ, y(*;(p) 8 W1 ,2 [0,TIY I,

z(:wq) e C(o,TIz) nl C 0O,T;Hj nl C2 [0,T;V*]. w(*;w) e CEO,T,w] nl C1 10,T;Vl.

if wp e W(0) then (z(t;(P),;(t;(P)) e W(t) for 0 t 4 T and

U(t;'D) - F(ti(P) -B v(tIOp
(7.26)

-B Ef(t)(z(tI~p),Z(ts(P))11
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u(t) =-B*W(t), w(O) 4le v, ()+ Cy(0) = 40 e H

)recisely, if w(*) e C[O,T~v] fl 1,2 0,T;H] with ;(1) + Cy(*) e (0,T;H] n1 Cli 0,T;V*1

*1,2
ies (7.20) then w(*) = (-;(,)-c y(*),w(,)) e C[O,T;Hi n wl W'[0,T;W'1 is the unique

Lon of (7.19) and vice versa. The output of (7.20) is only well defined in a strong

if w(-) e (0,T;W] or, equivalently, ' (*) + C*y(*) e C 
1 [0,T;H]. This will always

tcase if the system is weliposed and y(,) e W 1 ,
2 (0,'r;Y], w(0) e W, d0O) e V.

in the special situation of (7. 12) the dual system corresponds to the hyperbolic PDE

L (~+ y)(x,t) + ~(1Hoa~ )(x,t) =0, x e Q, t T

u.(x,t) = B.w~x,t), x e ail, t < T, j .. ,- .-

Let us now consider the problem of minimizing the cost functional

J(U) T [lyt)1 Iu(t)12 ]dt

ct to the SCS (7.15), respectively (7.14). In order to apply the results of section 5

is problem we assume that the SCS (7.15) is well posed and introduce the operator

11(t) C (T-t)I+(T-t)T(T-t)]- C(T-t) e L(H,H*

0 4 t 4 T. Also, for all P e H, 418H we denote by z(,;T,P,) e C[0,T;H] nl

7;v*] nl w
2
,
2 
[0T;W*1, u(*;T,P,) e L 2 (0,TU], y(,;T,,) e L 2 [0,T;VI and

,tP,41) e C[0,T;v) l nw1,2 10,TiH] with Cz(*:T,p,) e w 1,2[0,T;Y1 and

p,41,) + C y(*uT,P,1) e C[0,T,H] nl ClEO,T;V*l the unique solutions of the coupled

ions (7.14), (7.20). Finally we introduce for 0 4 t -C T the space W(t) of all

H for which there exists a y, e y with C y1 e v and
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under SF(t). Moreover, if P e WF then A F- ( ,A 0 +BCP) A(,40) and ,

zF(.5P) e C[0,Tiz] n C1 [0,T;H] n C2 [0,T;V*], uF (-p) e WI' 2 [0,T;U] with

i(t;,P) -z (tjk1 utP)=ut;Aq~p), uyt;,p) = rzF(t;cp) - Cz (tgcP).F F Y" F FF F F FU

(iv) If either U is finite dimensional or C e L(v*,V), then D(AF) =W F

We consider the dual system of the SCS (7.15) in the dual spaces V* V x W, 0

H H x V. W* w V* x H. We identify only the spaces U and V with their respective

dual so that the operators A* e LlV*,H*) n L(H*,W*), C* e L(V,W), B* e L(V*,U), T e L(VU)

are given by [ 0 A ] 0: I
A * 

[C]

13 0o B ' , : U B- .(0 A * ) -IC "

Observe that the range of (I-A ) is always contained in H x W, that B = [0 ].j

extends naturally to a bounded operator on this space and that T is given by the

composition of these operators. Now the dual SCS in the time reverse form is described by

the equations

d/dt w(t)-- A w(t)- C y(t) , w(T) e *e ,H

(7.19)
u(t) = - B (CI-A )(uw(t)-d/dt w(t)) - T y(t) , t ( T

The equation for the output requires that w(1 = (w0 (*),w 1 (*)) e wI,2(0,T;H
*] which

implies that J w1 (.) - 0( ) e L2 [0,TH] and hence w1(,) e L
2 [0,TiW]. Furthermore, the

output of (7.19) can be written in the simpler form u(t) = - BCw(t) if B* is understood

as the extended opeator on H x W. Note that the SCS (7.19) is related to the second order . "

Cauchy problem
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d/dt z(t) - ~~ (t), z(0) = P e

.17) { r olz(t) u~t)

Ly(t) Lo CIz(t), t > 0

in section 2.2. This means that z(,) e C1(o,T;H] satisfies (7.15) if and only if

*e C[0,T;Z] and (7.17) holds.

We point out that everything remains the same if U is an arbitrary Hilbert space and

e L(U,W) is injective and strictly unbounded with respect to V* which we will assume

om now on. In that context it is interesting to state explicitly the consequences of the

rturbation result in section 4. For this purpose we denote by B(T) e L(L2 [0,TIU];H),

T) e LCH,L2 [O,TVJ) and T(T) e L(L2 [O,TUl], L2 [0,T,V]) for T > 0 the operators

troduced in section 2.1.

'ROLLARY 7.7

Suppose that the SCS (7.15) is well posed, that Y U and that I - (t) is

vertible for t > 0. Then the following statements hold.

(i) The oprtr S(t) =S(t) + 8(t)[I-T(t)]- 1C(t) e L(H) define a strongly

ntinuous semigroup whose infinitesimal generator will be denoted by AF.

(ii) The closed loop input u(1) -u F (*P - [I-T(T)]- C(T)(P e L2 10,T;UJ and the

rst component z(-) - z F (.; ) e C0,TH] nl c1 [O,T;V5 ] nl W2 ,2 [0,T;WJl of Sft)cp are the

igue solutions of the feedback system

{i(t) -Ax(t) + Bu(t) e w*, z(0) = p 0e H, 1(0) ( P' e V ,

u(t) = d/dt Cz(t) ,t > 0

enever (P e H. Furthermore SF t)I (z(t),;(t)) for all t > 0. .

(iii) WF ' e H-HjA'PO + BOP 1 *1 (,P e ZxHjrPO = 4)1 C V(A) is invariant

-74-



and vice versa. The equation for the output, of course, requires that z(t) e WI' 2 [0,T;H].

It can be written in the simple form y(t) = Cz(t) if C is understood as the extended

operator on H x H. However, for some purposes it is convenient to keep (7.15) in its more

complicated form. In particular, the duality relations can be derived in a straighforward 0

way and the results of sections 4 and 5 can be applied directly.

It requires only the G3rding inequality (7.4) to establish the hypotheses (SO) and

(SI) of section 2.1 for the SCS (7.15). In fact, it follows from the Hille-Yoshida-

Phillips theorem that A is the infinitesimal generator of a strongly continuous group

S(t) e L(W) n L(H) n LM(). This proves the uniqueness for the weak solutions of (7.12) and

their existence if P = (0, 1 ) e H and u.(-) e W1 '2 [0,TL 2(aQf]. We denote the weak

solution of (7.12), respectively (7.14), always by z(t;IC,u) and it is given by the first

component of

z(ts;p,u) = S(t)(P + I S(t-s)Bu(s)ds e H
0S

If z(; P,u) e CI[0,T;HJ then the corresponding output of (7.12), respectively (7.14) or

(7.15), will be denoted by y(t;P,u). If the SCS (7.15) is well posed then the same

notation extends to arbitrary u(*) e L2 [0,T;U]. In this case it follows from the usual

density and continuous dependence arguments that the equation S

(7.16) cz(t;P,u) -C ° + It y( sPu)ds

0S

holds for all p e H, u(.) e L2 [0,T;U], t > 0.

Now let Z L H, A e L(Z,V*), fr e L(zU) be given as in section 7.1 and define

r e L(Z,U) by rt = r0 ,  r w m1 for t e z. Then we get

Z = {t e HIA e H + range 8} * Z x H

and the SCS (7.15) is related to the BCS
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(7.14; 2) ZCO) e P H, ZO I P' e V*

where u(t) e L=Urn and B e L(U,W*) is defined as in Remark 7.5 (11). If

z(-) e C1[0,TiH] then the output of the system is given by

(7. 1403) y(t) =di'dt Cz(t), t > 0

In order to rewrite system (7.14) into a first order SCS as in section 2.1 we introduce

the spaces W -V x H, H - H X V*, V - V* x W* s0 that

W L. H L V

with continuous, dense injections. Since the bilinear form a(-,-) need not be positive, we

consider on each of these spaces the standard inner product and identify none of them

with its respective dual. We also introduce the operators C e L(W, Y), A e L(W, H) nl L(H, V) ,

B e L(LJ,V), T L(U,Y) by

A [ 0 ] []B
C [ o C] TP 1C(1J I-A) BI B

observe that the range of (iVI-A) B is always contained in H x H, that C (0 c1

extends naturally to a bounded operator on this space and that T is given by the

composition of these operators. Now for every weak solution z(t) of (7.12) the function -

z() =(z()z())e C[0,T;H] n W1'2C0,TIV] satisfies the abstract SCS

(d/dt z(t) Az(t) + Bumt, t > 0, z(0) = P e H

(7.15)y(t) = C(pi-A)- (li(t)-d/dt z(t)) + T Pu~t)
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7.2 HYPERBOLIC SYSTEMS

Consider the hyperbolic PDE with Dirichiet boundary control described by the equations

- (x,t) + (-1x- -P x
a2 lpl 0 , D (a PCDz(,,.. 0,xe t>o

(7.12) Dlz(x,t) u u(x,t), x e aa t 0 , i o,.,-

y(t) =C it (-,t), t > 0,

where Q C RP and a Wx have the same properties as in the previous section and C is a
PC

bounded linear operator from H L L2 (9) into the Hilbert space Y. Also the spaces

U - L 2 (Q), W - flm(a H3'(0), V - HM(S), the bilinear form a(,,) on Hm(Q) and the
0 0

operators L,L* e L(H 2m (),L 2 (0)), Bj e L(U,W*), A e L(w,H) nl L(v,v*) nl L(HW*) are defined

as in section 7.1. Then it follows again from Theorem 7.1 that every classical solution of

(7.12) is a weak solution in the following sense.

DEFIMITION 7.6 (weak solution)

Let UC) e L2 o0,T,L2 (o be given. Then a function zC*) e C[,TL(mm n
1 2,

C (0,TH-M(Q)] is said to be a weak solution of.(7.122 if <*~,z(,)> e W '(0,T] for every

*i e H 2m () nl HTM() and the following equation holds for almost every t 8 (0,T]0

(7.13) d /dt2  'I,z(t)> + (L '(,z(t)> 0 <.'1 B;*,uj~t)> 2 (O

This means that z(*) e CCO,TJH] nl Cl(0,T;V*] nl W2,2 (0,TIW*] satisfies the second order

abstract Cauchy problem

(7.1401) i(t) =AXWt + Bu~t) ,t > 0
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Now let (P e Z be given and observe that (P 0 ~ (MI-A) B r ~

(uII-A)- (u(-AMp) e H"1(f). Moreover, choose ujn eC C() converging to r (p in L 2(39).
0

Then there exists a on e C() with r.o n un for j 0,...,m-1 (FOLLAND [15, p.

294]). Hence it follows from statement (iii) that

S+ )'(PI-A) 1
B (u n r () e H M(9) .0

Furthermore, (P n converges to (P in Z since r (Pn = n1 and n_(,-()=

2.1 U(iiI-A) -1B (un-r 0P. Therefore Hm (g) is dense in Z.
0 jj

REMARKS 7.5

(i) The results of this section indicate that Z is the natural space for studying

the solutions of both the parabolic PDE (7.1) and the associated elliptic boundary value

problem (7.11). It follows from Lemma 7.4 that Z is the completion of Cl) with respect

to the norm

11 - (2 + ILPI 2  + XI-D(PE 22
z L 2(fl) H -m(a) 0 VL 2 0a)

(ii) Let us define B e L(Um,W*) by Bu B, 1 u for u =U,.,m, e Lim.
-.1 m

Then it follows from Lemma 7.4 that the operator (VI-A) aBe L(U ,Z) is the extended -

solution operator for the elliptic boundary value problem (7.11). This relates our results

to those by BALAKRISHNAN [2], wASHBURN [45].

(iii) If u e LP' then it is easy to see that (P =(MI-A)- Bu e 2(Qn) satisfies

LtP + PV-0 in the distributional sense. Hence it follows from the local regularity theorem

for elliptic operators (see for example FOLLAND [15, p. 269]) that (p eC lo(Q). This shows

m
that Z LH 1  f)
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In particular, AO = -L(P for (P e H 2m (1)

-1 m
(ii) Let uj e L2

a) be given and suppose that (P = J
1
C(PI-A)-IB u e H (9).

Then { a(*,P1 + o<Jp> - 0 , 8 Ho(Q) , 0

(7.11) 01w-u. , j- 0,1 ....m-1 .

DJP 
....

(iii) If 0 e P(Q) then (P oM-(JI-A)-
1
B DJO e Hili) and (7.11) holds with

u1 = ~.

PROOF: Let (P e Hm(b) be given and define 8 e v* by <*,O> = -a(*,(p) for * e He )

Then it follows from Theorem 7.1 that the following equation holds for e 8 H2m(a) n H ) M-'

<,A(P + B. Ok> - L*P> + 0 <<, *i "V ""',4>
0 WW VV* "

By equation (7.7) and Lemma 7.3, this implies e Z, A(P 4, r (P D'(P. Thus we have proved

that H (0) C. Z and (7.9), (7.10) hold. It follows from (7.9) and (7.10) that there exists

m
a constant c > 0 such that I4I ( cI 0 for all (P e H (Q) and hence the injection of

Hn(Q) into Z is continuous. S

This proves all the assertions of statement (M) except from the density of Hm(Q) in

Z. State (ii) follows now immediately from Proposition 2.8 i). In order to prove statement

(iii), let 0 e Hm(Q) be given and define (P - .;-I(UI-A)'IB r 0. Then it follows again 0

from Proposition 2.8 that q e z and aP = p, r (P = r 0. Therefore we get from equation -

(7.7) that A(4 -4) = e - 0 eV and hence (p - 0 e Hm (Q). This proves statement (iii). -
0
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V C 9 1. V 1 V

The previous Lemma allows us to introduce the space

00

and operators z Z v r. Z + U such that

(7.7 A + M1 Br (P (P e00

Then Z becomes a Hlbert space if we define

1pm12 = *Pm2 + A1 + -i 02
z H V 0 U

Now the results of section 2.2 show that the SCS (7.5) is equivalent to the BCS

{ t) Az(t) ,t ;0 0, Z(0) z e z

(7.8) zt
r.z(t) u u(t) ,j = '.'-

More precisly, the BCS (7.8) is well posed in the state space V (Proposition 2.11) and

for all zoe z and all u.C e w"2 (0,T;L (89)] with r . = jO the function

z(*Iz0 ,u) defined by (7.6) is in C[O,T~zi fl C1 O,TIV]j and satisfies (7.8) (Proposition

2.8). Moreover, the definition of Z shows that every solution z(-) e L2 (0,T;H] nl
Wl,2E0,T;V*] of the SCS (7.5) is in L2 [0,T;z] and also satisfies (7.7).

LEMMA 7.4

Wi Hm(Q) C Z with a continuous, dense injection and

(7.9) <( 1Aq> =-a(*, (P) , 9 e H m () , e H'1

00

(7.10) D(D( e H'01) j 0,=-
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and depends in these spaces continuously on z0 e v and uj() e L2[O,TU], j -0. m-1.

This proves the existence, uniqueness and continuous dependence for the weak solutions of

(7.1). In other words, the SCS (7.5) is well posed in the state space V* in the sense of. .

Definition 2.4, if the output is defined through any bounded operator on H.
oC

In order to transform the SCS (7.5) into an abstract BCS with V* as a state space we

have to make sure that the input operators B e L(U,W*) are strictly unbounded with

respect to this space.

LEMMA 7.3

Sjuj e V* - 0  u1 .... - 0

PROOF: Suppose that not all the ul vanish identically and let k e 0,...,m-1} be the

smallest index with uk(.) 1 0. Choose v() e C (8Q) such that <v,uk> - 1. Let V(x),

x e ag, denote the (global, smooth) outward unit normal vector. Then the neighborhood

V - ix + tv(x)Ix e aa, -e < t < 0i is diffeomorphic to U1 x (-C,C) if e is

sufficiently small. Finally, let (-) e C(Ri[0,1]) satisfy (t) 1 1 for It[ 1 1/4

and 4(t) - 0 for Itj ) 1/2. Then we define C e C'(O) by

t2m-1-k
*(x+tV(x)) r(t/e) (2-- X-,_ x e , -c < t 0
C (2m-1-k)l b (x)'X8 . <t(0

k

and l(x) 0 for x e Q\v, (compare FOLLAND (15, p. 294]1. Then B = 0 for j > k

and B * = v. This implies

kS

C 0,).o
1 Juj 0 ? JBt *€,uj> - <vuk> - 1

Since e f0(0) and 1* 1 tends to zero as C approaches zero, we conclude that

M-1 H (9)
1B ujEV* 00
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<(4'AP> a('*,(), ip, e v

is the infinitesimal generator of an analytic semigroup S(t) e L(v*) (see for example

PAZY [32], FRIEDMAN (16]). Furthermore, it follows from Rellich's Lemma that A has a

compact resolvent operator. The restriction of A to D(A) - {(f e vjA W8 H} is the

generator of the restricted semigroup S(t) e L(H). A classical result in the L2  theory

for elliptic boundary value problems shows that the domain of this restriction is given by

W - D(A) - {-P e VIA ) e Hi) - H2m (Q) nl Hm~l)

(AGMON-DOUGLIS-NIRENSERG [1], FRIEDMAN [16]). Moreover, Theorem 7.1 shows that

AP--LAP, peW .

Now the trace theorem allows us to understand the boundary operators B in Theorem 7.1 as

*bounded linear transformations from W into U L Onf). Hence Bj e L(Uiw*) and we can

rewrite (7.3) into the abstract Cauchy problem

*(7.5) 1(t) Ax(t) + J."B u (t), zCO) =o 8 V-

* 2

For all 8o V* and all u ()e L2(O,TItJ] the corresponding solution of (7.5) is given

by the variation-of-constants formula

(.)z(t;zo,u) S(t)zO + ) f' S(t-s)B u. (s)ds .

* It follows from results by DaPRATO (8], BALAKRISI{NAN [2], WASHBURN [45], LASIECKA [23] that

this solution always lies in

z(,;zu, (O,T;H] C[O,T;V*] n 1, O,T;Wl
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0

<L *, 2 - PJ~c) + ~ ~ Bt(x)D)((x)dS(x)
L 2(fl) a0

'ILe highest order term of B. is of the form b WXD 2m 1- + D -- where

b.(-) e C-(M) is bounded away from zero and D2-- is a tangential differential

operator on aQ of order at most 2m-1-j.

(ii) Fo r p e H 2m (Q) and * e Hm(Q) we have <*,LqP> - a*()
0

This theorem shows that every classical solution of the parabolic POE (7.1) Is a weak

solution in the following sense.

DEFINITION 7.2 (weak solution)

Let u) e L2(0,T,L(2 0))] be given. Then a function z(*) e L 2 0,TIL 2(01)] is said

to be a weak solution of (7.1) if <'*,z(*)>, e W", 2 (0,T] for every e H H2 m (a) nl t~(f and
0 --

the following equation holds for almost every t e (0,T]

(7.3) d/dt <4',z(t)> + <L 4iz(t)> 0 ).<BJ4*.u(t)> 20

The main step toward the existence and uniqueness result for weak solutions is the

Garding inequality

(7.4) a((,P) ;0 CUP, 2 
-WI(P1

2 
, e

V H (

which tollows from the uniform ellipticity (7.2) (see for example POLLARD [15, p. 3091).

This inequality in connection with standard results in semigroup theory shows that the

operator A V +~ V* defined by
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under the assumptions of Theorem 7.9. This cost functional corresponds to the bounded

output operator C = 0T 0] e L(H,H).

7.3. TWO EXAMPLES

In this section we briefly discuss two specific wellposed partial differential

equations in a single space dimeniion. The essential feature of these systems is that the

input and output operators are both strictly unbounded. In particular the wave equation

(7.27) has been one of the main motivating examples for the development of the theory in

section 2.

Consider the one dimensional second order hyperbolic PDE with Neumann boundary control

and point observation in the velocity described by

a2Z (x,t) a2  2 z 
(x,t), 0 < x < L, t > 03t2  (xx

2  ' a T

(7.27) z(0,t) = 0, Z (L,t) = bu(t), t > 0
Ix

y(t) - c I (L,t), t > 0

where u(t) e R is the input and y(t) e R is the output. This system can be understood

as a mathematical model for an undamped string with a fixed left end and the right -i

moving freely along a vertical line, the control acting through the angle at the right

end. Solving equation (7.27) along its characteristics one can see that its input/output

relationship with zero initial state is described by the difference equation

(7.28) y(t) + y(t-2L/a) abclu(t)-u(t-2L/a)] .

Using this fact in connection with results in PRITCHARD-SALAMON [34) or HO-RUSSELL [19] one

gets that system (7.27) is well posed in the state space

0
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H W (P ,'p) e H 0,L] x L (0,L] 1(P () 0)

more precisely, this sytem fits into the framework of section 2.2 with

Z - ((p ,(P ) e 11 [0,L] H 1 0,L] J(P 0(0) =0, (P (0) =0)

A= (OP1, 2 a~w -1. 1Pb''WKO .O
ax2

and is well posed in the sense of Definition 2.10. System (7.27) is of particular

interest, since it can be stabilized through the static output feedback law

(7.29) u(t) =-fy(t) ,fabc > 0

* (RUSSELL (391, QUINN-RUSSELL (35]). Following Theorem 4.2, the well posednesa of the

closed loop system (7.27), (7.29) requires the invertibility of the operator I + fT(t)

for t > 0. It follows from equation (7.28) that this operator is invertible if and only

* if fabc #' -1.

Our second example is the one dimensional fourth order hyperbolic PDE described by

a2z 4 a4z
2 ~ (~t -4~ (x,t), 0 < x L, t > 0 ,w-

at ax =

(73)z(0,t) 0, T2 (L,t) =0, t> 0

az(Ot) 0,ax3 (L,t) =bult), t > 0

y(t) = 40 (L,t), t >0
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where u(t) e R is the input and y(t) e R is the output. This system can be understood

as d mathematical model for an undamped beam with a clamped left end and a fr-ee right end,0

with the control acting through an external force at the right end. System (7.30) can

again be reformulated within the framework of section 2.2 with

0 1 2 2 0
H -(op , p e H [0,L] x L [0,L]J( O(0) - P(O) - O},

0 1 4 2
Z {((P .P )e H [0,L) x H (0,L] 1W0(O) - P(O) - p (L) -0, (P (0) s '~(0) =0)

1 44 (P 9 3 400  1
- a -)-jI r, b-1  W,(L KV c~ (L)

ax 4ax3

The well posedness problem for system (7.30) in the state space H has apparently not been

investigated in the open literature. However, a spectral analysis of the free system in

connection with general well posedness criteria in PRITCHARD-SALAMON (34] or HO-RUSSELL

[19) shows that the hypotheses (B2) and (B3) are satisfied. Hypothesis (82) will no longer

be satisfied if the control acts through the second derivative. The verification of

hypothesis (B4) seems to involve some further technical difficulties and is left as a

conjecture. The feedback stabilization problem for system (7.30) has been studied by CHEN-

DELFOUR-KRALL-PAYRE [5). They have shown via energy estimates that the system (7.30) can

be exponentially stabilized through the static output feedback law

(7.31) u~t) fy(t) ,fbc > 0

7-S
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